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Y.S. JAGAN MOHAN REDDY  CHIEF MINISTER AMARAVATI
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MESSAGE

I congratulate Akademi for starting its activities with printing of textbooks from
the academic year 2021 — 22.

Education is a real asset which cannot be stolen by anyone and it is the foundation
on which children build their future. As the world has become a global village, children
will have to compete with the world as they grow up. For this there is every need for
good books and good education.

Our government has brought in many changes in the education system and more
are to come. The government has been taking care to provide education to the poor
and needy through various measures, like developing infrastructure, upgrading the skills
of teachers, providing incentives to the children and parents to pursue education. Nutritious
mid-day meal and converting Anganwadis into pre-primary schools with English as medium
of instruction are the steps taken to initiate children into education from a young age.
Besides introducing CBSE syllabus and Telugu as a compulsory subject, the government
has taken up numerous innovative programmes.

The revival of the Akademi also took place during the tenure of our government
as it was neglected after the State was bifurcated. The Akademi, which was started on
August 6, 1968 in the undivided state of Andhra Pradesh, was printing text books,
works of popular writers and books for competitive exams and personality development.

Our government has decided to make available all kinds of books required for
students and employees through Akademi, with headquarters at Tirupati.

I extend my best wishes to the Akademi and hope it will regain its past glory.

(Y.S.JAGAN MOHAN REDDY)







Dr. NANDAMURI LAKSHMIPARVATHi
M.A., M.Phil., Ph.D.

Chairperson, (Cabinet Minister Rank)
Telugu and Sanskrit Akademi, A.P.

Message of Chairperson, Telugu and Sanskrit Akademi, A.P.

In accordance with the syllabus developed by the Board of Intermediate, State
Council for Higher Education, SCERT etc., we design high quality Text books by recruiting
efficient Professors, department heads and faculty members from various Universities and
Colleges as writers and editors. We are taking steps to print the required number of these
books in a timely manner and distribute through the Akademi’s Regional Centers present
across the Andhra Pradesh.

In addition to text books, we strive to keep monographs, dictionaries, dialect texts,
question banks, contact texts, popular texts, essays, linguistics texts, school level dictionaries,
glossaries, etc., updated and printed and made available to students from time to time.

For competitive examinations conducted by the Andhra Pradesh Public Service
Commission and for Entrance examinations conducted by various Universities, the contents
of the Akademi publications are taken as standard. So, I want all the students and
Employees to make use of Akademi books of high standards for their golden future.

Congratulations and best wishes to all of you.

*

(NANDAMURI LAKSHMIPARVATHI)







J. SYAMALA RAO, LAS.,

Principal Secretary to Government

Higher Education Department
Government of Andhra Pradesh

MESSAGE

I Congratulate Telugu and Sanskrit Akademi for taking up the initiative of

printing and distributing textbooks in both Telugu and English media within a short
span of establishing Telugu and Sanskrit Akademi.

Number of students of Andhra Pradesh are competing of National Level for
admissions into Medicine and Engineering courses. In order to help these students
Telugu and Sanskrit Akademi consultation with NCERT redesigned their Textbooks

to suit the requirement of National Level Examinations in a lucid language.

As the content in Telugu and Sanskrit Akademi books is highly informative
and authentic, printed in multi-color on high quality paper and will be made available
to the students in a time bound manner. I hope all the students in Andhra Pradesh
will utilize the Akademi textbooks for better understanding of the subjects to compete

of state and national levels.

st

(J. SYAMALA RAO)




THE CONSTITUTION OF INDIA
PREAMBLE

WE, THE PEOPLE OF INDIA, having

'l solemnly resolved to constitute India into a

[SOVEREIGN  SOCIALIST SECULAR

94| DEMOCRATIC REPUBLIC] and to secure to all

W its citizens:

JUSTICE, social, economic and political;

LIBERTY of thought, expression, belief, faith

and worship;

EQUALITY of status and of opportunity; and

to promote among them all

FRATERNITY assuring the dignity of the
individual and the [unity and integrity of the
Nation];

N IN OUR CONSTITUENT ASSEMBLY this |
|42 twenty-sixth day of November, 1949 do HEREBY
(& ADOPT, ENACT AND GIVE TO OURSELVES

THIS CONSTITUTION.
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Foreword

The Government of India vowed to remove the educational disparities and
adopt a common core curriculum across the country especially at the Intermediate
level. Ever since the Government of Andhra Pradesh and the Board of Intermediate
Education (BIE) swung into action with the task of evolving a revised syllabus in
all the Science subjects on par with that of CBSE, approved by NCERT, its chief
intention being enabling the students from Andhra Pradesh to prepare for the
National Level Common Entrance tests like NEET, ISEET etc for admission into
Institutions of professional courses in our Country.

For the first time BIE AP has decided to prepare the Science textbooks.
Accordingly an Academic Review Committee was constituted with the
Commissioner of Intermediate Education, AP as Chairman and the Secretary,
BIE AP; the Director SCERT and the Director Telugu Akademi as members. The
National and State Level Educational luminaries were involved in the textbook
preparation, who did it with meticulous care. The textbooks are printed on the
lines of NCERT maintaining National Level Standards.

The Education Department of Government of Andhra Pradesh has taken a
decision to publish and to supply all the text books with free of cost for the
students of all Government and Aided Junior Colleges of newly formed state of
Andhra Pradesh.

We express our sincere gratitude to the Director, NCERT for according
permission to adopt its syllabi and curriculum of Science textbooks. We have
been permitted to make use of their textbooks which will be of great advantage
to our student community. I also express my gratitude to the Chairman, BIE and
the honorable Minister for HRD and Vice Chairman, BIE and Secretary (SE) for
their dedicated sincere guidance and help.

I sincerely hope that the assorted methods of innovation that are adopted
in the preparation of these textbooks will be of great help and guidance to the
students.

I wholeheartedly appreciate the sincere endeavors of the Textbook
Development Committee which has accomplished this noble task.

Constructive suggestions are solicited for the improvement of this textbook
from the students, teachers and general public in the subjects concerned so
that next edition will be revised duly incorporating these suggestions.

It is very much commendable that Intermediate text books are being printed
for the first time by the Akademi from the 2021-22 academic year.

Sri. V. Ramakrishna I.R.S.
Director
Telugu and Sanskrit Akademi,
Andhra Pradesh




The Board of Intermediate Education (AP), has recently revised the syllabus in
Mathematics for the Intermediate Course with effect from the Akademic year 2012-13.
Accordingly Telugu Akademi has prepared the necessary Text Books in Mathematics.

In accordance with the current syllabus, the topics relating to paper I-A : Algebra, Vector
Algebra and Trigonometry are dealt with in this book. The syllabus is presented in ten chapters.
Algebra part given in three chapters : Functions, Mathematical Induction and Matrices
Vector Algebra part given in two chapters : Addition of Vectors and Product of Vectors.
Trigonometry part given in five chapters : Trigonometric Ratios upto Transformation,
Trigonomitric Equations, Inverse Trigonometric Functions, Hyperbolic Functions and
Properties of Triangles.

Further, for the benfit of students intending to appear for All India Level Competitive
Examinations, the Additional Reading Material is included in the Appendix, It contains four
chapters : Sets, Relations, Sequences and Series and Mathematical Reasoning. These
topics are for additional reading, but not for examinations. No question will be set on the
Additional Reading Material, in the Intermediate I Year Public Examination, Mathematics,
paper- IA.

Every chapter herein. is divided into various sections and subsections, depending on
the contents discussed. These contents are strictly in accordance with the prescribed
syllabus and they reflect faithfully, the scope and spirit of the same. Necessary definitions,
theorems, Corollaries, proofs and notes are given in detail. Key concepts are given at the
end of each chapter. Illustrative examples and solved problems are in plenty, and these
shall help the students in understanding the subject matter.

Every chapter contains exercises in a graded manner which enable the students to
solve them by applying the knowledge acquired. All these problems are classified according
to the nature of their answers as I - very short II short and III-long. Answers are provided
for all the exercises at the end of each chapter.

Keeping in view the National level competitive examinations, some concepts and notions
are highlighled for the benefit of the students. Care has been taken regarding rigor and
logical conSistency in the presentation of concepts and in proving theorems. At the end of
the text Book, a lisl of some Reference Books in the subject malter is furnished.

The Members of the Mathematics Subject Committee, constituted by Board of
Intermediate Education, were invited to interact with the team of the Authors and Editors.
They pursued the contents chapter wise and gave some useful suggestions and comments
which are duly incorporated. The special feature of this Book, brought out in a new format,
is that each chapter begins with a thought mostly on Mathematics. through a quotation
from a famous thinker. It carries a portrait of a noted mathematician with a brief write-up.

In the concluding part of each chapter some relevant historical notes are appended.
Wherever found appropriate, references are also made of the contributions of ancient Indian
scientists to the advancement of Methamatics. The purpose is to enable the students to
have a glimpse into the history of Mathematics in general and the contributions of Indian
mathematicians in particular.

Inspite of enough care taken in the scrutiny at various stages in the preparation of
the book, errors might have creptin. The readers are therefore, requested to identify and
bring them to the notice of the Akademi. We will appreciate if suggetions to enhance the
quality of the book are given. Efforts will be made to incorporate them in the subsequent
editions.

Prof. P.V. Arunachalam
Chief Coordinator




Preface to the Reviewed Edition

Telugu Akademi is publishing Text books for Two year Intermediate in
English and Telugu medium since its inception, periodical review and
revision of these publications has been undertaken as and when there

was an updation of Intermediate syllabus.

In this reviewed Edition, now being undertaken by the Telugu Akademi,
Andhra Pradesh the basic content of its earlier Edition is considered
and it is reviewed by a team of experienced teachers. Modification by
way of correcting errors, print mistakes, incorporating additional content
where necessary to elucidate a concept and / or a definition, modification
of existing content to remove obscurities for releasing the concept more

easily are carried out mainly in this review.

Not withstanding the effort and time spent by the review team in this
endeavour, still a few aspects that still need modification or change

might have been left unnoticed.

Constructive suggestions from the academic fraternity are welcome
and the Akademi will take necessary steps to incorporate them in the

forth coming edition.

We appreciate the encouragement and support extended by the

Academic and Administrative staff of the Telugu Akademi in fulfilling

our assignment with satisfaction.

Editors
(Reviewed Edition)
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Chapter 1

Functions

“The word function (or its Latin equivalent) seems
to have been introduced into mathematics by Leibnitz
in 1694. The concept now dominates much of
mathematics and is indispensable in sciences’

- E.T. Bdll

I ntroduction

All the scientists use mathematics essentially to study
relationships. Physcigts, Chemists, Engineers, Biologistsand
Social Scientists, all seek to discern connection among the
various elements of their chosenfieldsand soto arriveat a
clear understanding of why these el ements behave theway
they do. A function isaspecial caseof arelation.

Thefamousmathematician LeeuneDirichlet (1805-
1859) defined afunction asfollows. A variableisasymbol
which representsany oneof aset of numbers; if twovariables
x and y aresorelated that whenever avalueisassignedto x
there is automatically assigned, by some rule or
correspondence, avalueto y, thenwesay yisa(single
valued) function of x, the permissiblevaluesthat x may
assume constitute the domain of definition of the function,
andthevauestakenonby y constitutetherange of values
of thefunction.

Dirichlet
(1805 - 1859 )

Johann Peter Gustav Lejeune
Dirichlet was a German
mathematician credited with the
modern “ formal” definition of
a function. He was a student of
Gauss. After Gauss's death in
1855, he was appointed as
Gauss's successor at Gottingen.
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The above definition is a very broad one and does not imply anything regarding
the possibility of expressing the relationship between x and y by somekind of analytic expression. It
stressesthe basicideaof arelationship between two sets. Set theory hasnaturally extended the concept of
function to embracerel ationshi ps between any two setsof elements.

In this chapter we focus our attention on a special type of relation, a function,
that playsanimportant rolein mathematicsand itsmany applications. Herewe study itsbasic propertiesand
then discuss severd special typesof functions. Inorder to have variousimportant applicationsof functions
later, it isessential to get agood grasp of the conceptsin thischapter.

1.0 Orderedpairs

Let A and B besets. If alJA and bOB then(a, b)isanordered pair.‘a’ iscalled thefirst
component (coordinate) and ‘b’ iscalled the second component (coordinate) of the ordered pair (a, b).

For example, the coordinatesof apoint inaplaneareordered pairsof real numbers. If (a,,b) and (a,, b,)
areordered pairs, then

(a. b) = (2.b) = a=a,and b =b,.
1.0.1 Definition (Cartesian product)

Let A and B betwo sets. Then {(a, b)|a A, i B} is called the Cartesian product of
A and B, andisdenotedby A x B (tobereadas A cross B).

1.0.2 Examples
It A = {123, B{x} then
AxB = {LX), @Y), 2%, (2VY), B, 3V}
BxA = {(x1,(x2),(x3),(.2.(y.2), (.3}
AxA = {(11),12),13),(21,(22,.(23),.32,(3 2,3 3}
BxB = {(x,x), (X, ¥), (., (¥, Y}
1.0.3 Note

1. If A and B aredistinct non-empty setsthen AxB # BxA .

2. Ifoneof thesets A and B isempty, then A xB isalso empty.
3. Someparticular notations
R or R: setof dl rea numbers

R" : setofdlpositiverea numbers: {x|xO R, x > 0}
Q : sofdlrationa numbers

Q" : satofdl postiverationa numbers

N : setofadlnatural numbers

Z set of dl integers



If a,b0OR, a<b then

(ab) = {xOR | a<x<Db}
(@bl = {xOR|]a<xg<h}
[ab) = {xOR|a< x<b}
[ab)] = {xOR|]a<xg<h
[a,0) = {xORJa<x
(ax) = {xOR]a<x

(—o,a) = {xOR | x< a}
(-»,a = {xOR | x< &

1.0.4 Definition (Relation)

If A and B arenon-empty sets, then any subset of A x B iscalled areation from A
to B. Inparticular, any relationfrom A to A iscalled abinaryrelation on A.

1.0.5 Examples

if A={123,B{a,B then

AxB = {(La), 1.8). (2.a). (2.8). (3.a), (3.8)
(i) f={@a) (28), (3.a} isardationfrom A to B.
(i) g = {(@a), (LB} isareaionfrom A toB.

Infact wecandefine 2°=64 rdationsfrom A to B becausethe number of dementsin A x B is
6 hencethereare 2° subsetsof A x B.

1.1 Typesof Functions- Definitions

1.1.1Definition (Function)
Let A and B benon-empty setsand f beareationfrom A to B. If for each element
alJA, there exists a unique b OB such that (a, b)Of, then f iscalled a function (or

mapping) from A to B (or A into B). Itisdenotedby f:A - B.Theset A iscalledthe
domain of f and B iscalled the co-domain of f.

A function f canalso beseen inthefollowingway, whichtakesaninput xand returnsan output

f(X).
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1 X

| 1f|(x)

For example, if f:A - B isafunction defined as f(x) =x+1 and A ={1, 2, 3}, then

f(A)={2, 3, 4}. A

M

|7 fX)=x+1
1.1.2 Note

Arelation f from A to B (i.e f OA B) isafunctionfrom A to B if for each allA , there
exigsexactly one b0 B suchthat (a,b) O f andthis'b' will bedenoted by f (a) . Inother words, for each

alA , thereexistsauniqueelement f (a) 0B suchthat (a, f(a))D f.

)

1.1.3 Déefinition (Image, Pre-lmage)

If f:A - B isafunctionandif f(a)=b, then 'h' iscalled theimageof 'a' under f or
the f-imageof a. Theelement 'a' iscalled a pre-image or an inverseimage of b under f and
is denoted by f }(b) . More generallyif E O B, f Y(E) = {x| x O A, f(x) OE} iscalled the
inverse image of E under f. Then f (b) = f ({b}) if b O B.

1.1.4 Examples

1. Example: Therelation f ={(x, x> +1) | x OR} isafunctionfrom R to R, sinceevery xR has
association with unique element x? +1 in R*. Thefunction f : R _ R" isgivenby f(x)=x?+1.
Observethat f (1) =2 and f (—1) =2. Notethat the numberslessthan 1 have no pre-imageunder f.

2.Example: Therdation f = E(x,%) |0 # xDFﬁ% isnotafunctionfrom R to R sincethereisno b in

R suchthat (0, b) O f . But f(x):l isafunctionfrom R~{0} -~ Rsince every x DR~ {0} has
X

associationwithauniqueelementin R .



1.1.5 Definition ( Range)
If f:A - Bisafunction,then f(A), theset of all f-imagesof elementsin A, iscalledthe
rangeof f. Clearly f(A) ={f(a)ladA} O B.
Ao f (A)={bOB|b= f(a) for somedl A}

1.1.6 Examples

1.Example Let f : N - N bedefinedby f (n)=2n.
Thentherangeof f =f (N) = {2n|nDN}: set of all even natural numbers.

2.Example: Let f: R - R bedefinedby f (x)=x?.
Thentherangeof f =f (R) ={x2|xDR}: [0p0 ) B x*20 forall xORE,

1.1.7 Déefinition (Injection or one - onefunction)

A function f : A - B iscalled an injection if distinct elements of A have distinct
f-imagesin B. Aninjectionisalso called a one-one function.

f A - Bisaninjection - a,a,0A and & # a, impliesthat f (a,)# f (a,)
- a,a0A and f (a)="T (a,) impliesthat & =a,

1.1.8 Examples
1. Example

Let A={ab, c,d ad B={1234,3

(i If f:{(a, 3), (b,5), (c,1, (d,4)} then f isafunctionfrom A into B and for different
elementsin A, therearedifferent f-imagesin B. Hence f isaninjection.

i)y 1f9={(@ 2, (b,2), (c,3), (d,5} , then g isafunctionfrom A into B, but g(a) = g(b).
Hence ‘g’ isnotaninjection.
2. Example
Let f: R - R bedefinedby f (x)=2x+1. Then'f'isaninjectionsinceforany a,;, a,[IR
and f(a) =f() O 2+ 1= 2a+ 10 & a,.

3. Example
Let f: R - R bedefinedby f(x)=x2. Then' f'isnotaninjectionbecause f (1) =1=f (1).
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4. Example
Let f : N - N bedefinedby f (x) =x*. Then' f'isaninjectionsincefor a,, a, ON and
fl=f@ 0 a* at @& &) D -(& ak@=a) 0
0 & a O[-a,& N +a>a 0 = a a.
5. Example

Let A={ab,c,d and B={x,y.3 . Wecan'tdefineaninjectionfromA to B becauseatleast

twodistinct elementsin A havethesamef-imagein B forany function f : A - B.

1.1.9 Definition (Surjection)

A function f : A - B is called asurjection if therange of f is equal tothe co-domain
of f.

f:A - Bisasurjection - range f = f (A) =B(co-domain)
= B={f (a)|]aDA
- forevery b[OB thereexistsatleast
one alJA suchthat f (a)=b

Hencewemay concludethat f : A - B isasurjectionif every element of B occursastheimage
of atleast oneelement of A (i.e., every eementin B hasa‘preimage in A). A surjectionisasocaledan
ontofunction.

1.1.10 Examples
1. Example A B

Let A={1,2 3,4} andB={a,b,c} 1

i)y If f ={(@1a), (2,b), (3 0),(4,c)} then

f isafunctionfrom A to B and range

HWLWN

f=f (A)={a,b,¢ =B,the
co-domain. Henceitisasurjection.
Notethat f isnot aninjection.

Fig. 1.1
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(i) 1 g={(1,b), (2,b), (3,¢), (40} theng

A B
isafunctionfrom A toB but not asurjection 9
becausethereisno preimageto the element
alJB. Notethat g isnotaninjection.

2. Example Fig. 1.2
Let A={-3,-2,-1,1,2,3} and B={1,4,9}. If f:A _ B definedby f (x)=»*foral xJA
then, range f = f (A) ={f (-3), f (-2), f (-1, f @, f (2, f (3} ={14.9 =B.
O f: A B isasurjection. Notethat f isnot aninjection.

3. Example
Let f: R - R bedefined by f (x)=ax+b (a, bR and a#0). Then f is asurjection

-b
since for any y[OR (co-domain) there exists XZTDR (domain) such that

f (9=ax+b=20"D)
a

+b =y (i.e, every dementintheco-domain hasapre-imageinthedomain).
Notethat f isaninjectiontoo.

4. Example

Let f: R - R bedefinedby f(x)=x*+ 4. Thenrangeof f =[4, ) [~ forany xOR we
have x2 200 x*+4= 4] anditisnotequal toco-domain R. Hence f : R - R isnotasurjection. In
particular thereareno pre-imagesfor all real numberslessthan4initsco-domain R . Notethat f isnotan
injection.

1.1.11  Definition (Bijection)

If f:A - B isbothaninjection and a surjection then f issaid to be a bijection or
one-to-one from A onto B.

i.e, f:A - Bisabijection - f isbothinjection and surjection
- () Ifa,a0A and f (a)="1 (a,) then g =4,

(i) for every p[1B there exists atleast one g[JA
such that f (a)=b.
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1.1.12 Definition (Finite set)

If A is empty or there exists n[N such that there is a bijection from A onto
{1,2,3,...,n} then A iscalledafiniteset. Insuchacasewesay that the number of elements
inAis n and denoteit by |A| or n(A).

1.1.13 Remarks

(i) Inpaticular, if A and B aretwofinitesetswith |A|>|B| thenwecan’t defineaninjectionfrom A into

B. Henceif thereisaninjectionfromA toB then |A| < |B|. Theconverseof thisalso holdsgood, that
is,if A and B arefinitesetssuchthat |A| < |B|, thenwecandefineaninjection f : A - B, for, if

A={a,a,, ....a} thenthereexistdistinctelements by, b,,...., OB (since n=|A|<|B|) and
thefunction f : A - B,definedby f () =h, for 1<i <n,isaninjection.

(i) Let A and B betwofinitesetsand |A|<|B|, thenwecan’t defineasurjectionfrom A to B. Since

if f:A - B thenrange f = f (A) contansamogt |A| elements # | B| (codomain) B |A| <|BF.
Henceif thereisanontofunctionfrom A to B then |A| = |B|. Theconverseof thisalso holdsgood.
Thatisif A andB arefinitesetssuchthat |A|=|B|, thenwecandefineasurjection f : A - B; for
if B={b,b,,...n5} then n< |A| andhencethereexist distinct elements &, a,, ........ a 0OA
andwecandefine f : A - B by

¢ (a)—[b' if a=a for somei
o if aza for all i , whichbecomesasurjection.

(i) Notethat if thereisabijection ' f' fromafiniteset A toafiniteset B then, since f isbothinjectionand

surjection, |A| < |B| and |A|= [B| hence|A|= [B|. Thusfor any twofinitesetsA and B, |A| =|B] if and
only if thereisabijection f : A - B.

1.1.14 Example

Let f: R -~ R bedefinedby f (x)=2x+3,then from example 3 (1.1.10), f isabijection.

However if we changethedomainof f asNthen f(X)=2x +3 0N [Ox ON. Also,

(i) If x,%0ON (domain), f (x)=f (x,)0 2¢ 3 2x¢ 8 = X,.
Of: N> N isaninjection.



=

(i) Range f = f(N)={f (), f(2, f(3),..} £{579,.} #N.(codomain)
Hence f : N — N isnotasurjection.

Observe that the natural numbers less than 5 and the even natural numbers in the
co-domain N of f haveno pre-imagesindomain N.

1.1.15 Definition (Equality of functions)

Let f and gbefunctions. Wesay f and g areequal andwrite f = g if domain of
f = domainof g and f(x) = g(x) for all X[l domainf.

Problem : On what domain the functions f(x) = x* - 2x and g(x) = — X + 6 are equal?
Solution : f(X) =g(xX)
o X-2X= -X+6
- X-x-6=0
s (X=-3)(x+2=0
- X =-2,3
0 f(x) and g(x) are equal onthedomain{-2, 3}.

1.1.16 Definition (Constant function)

Afunction f : A _ B issaidto be a constant function, if the range of f contains one
and only one element. i.e. f(x) = c for all xOA, for somefixed c [ B. Inthiscasethe
constant function f will be denoted by ‘c’ itself.

1.1.17 Example

Let A={a,b,cd}, B={1,2,3 and f ={(a 2), (b,2), (c,2),(d,2)} then f : A - Bisa
congtant function.

1.1.18 Definition (Identity function)
Let A beanon-empty set. Thenthefunction f: A - A definedby f(x)=x forall xOA

is called the identity function on A and isdenoted by 1, .

1.1.19 Example
If A={a,b,q ,then 1, ={(a, a), (b,b), (c,c} .

1.1.20 Solved Problems
1.Problem: If f:RN\{G - R isdefinedby f(x)= x+§ then prove that
(f) = f03) +f(@.
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Solution: Since f (x) = Erﬁlﬁ
X

fe)+f @D =x"+ iz +ﬁ+}Ij = x° +i2 +2
X 1 X
oo
Bx-2,x>3
2 Problem: Ifthefunction f isdefinedby f (x) = 0K -2, ~2 <x <2
%x+1,x<—3

then find the values, if exist, of f(4), f(2.5), f(=2), f(-4), f(0), f(-7).
Solution: Notethat thedomainof fis (-, -3) OF 2210 @, ).
() Since f (x)=3x-2, for x>3,wehave f (4 =12-2=10
(i) 2.5doesnot belongto domainf, f(2.5) isnot defined.
(i) Since f(x)=x*-2-2<x<2,wehave f (-2) = (-2)? -2 =2
(v) Since f (x)=2x+1,x < -3, wehave f (-4) =2 (-4) +1=-7
(V) Since f(X)=x*-2when - 2 < x < 2, wehave f(0) =0°-2= -2
(vi) Since f(x) =2x+1, forx<-3,wehave f (-7) =2 (-7) +1 = -13.

3.Problem: If A= H),E, E, _n —% and f:A - B is a surjection defined
0 6 4 3 2
by f (x)=cosx then find B.

Solution: Let f:A - B beasurjectiondefinedby f (x)=cosx.

O O 0 1 O m gl
f (A) = Oof (0), f , f , f ,
@ =gron G BE He B a

= Eposo, cosL, cosZ, cos, cos—T%
6 4 3 2

0 0
B8 V3 1 1
_%”7' 2 2

4. Problem: Determine whether thefunction f : R — R defined by

Then B =range f

X _ 4-x

f(x)=é

—— Is aninjection or asurjection or a bijection.
e +e

X _ X

Solution: Let f : R » R bedefinedby f (X) = then f isnotaninjectionas

e*’

e+
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eO_eO e—e . . . .
f (0)=——5=0 and f (-1 = —=0 andalso f isnotasurjection since, for y=1
e +e e +e
thereisno XJR suchthat f (x) =1.
If thereissuch xOR then ¥ —e* =X +e™, clearly x£0
for x> 0 thisequationgives —-e™* = e whichisnot possible
for x<O0 thiseguationgives —e™* = e* whichisalso not possible.
5. Problem: Determine whether the function f : R -~ R defined by

_Eax—Zif <o isaninjection or asurjection or a bijection.

Solution: Since3> 2, wehave f(3) =3,
Sincel<2,wehave f(1)=5(1)-2=3
[0 1and3havesame'f’ image. Hence f isnotaninjection.
Let yOR then y>2 (or) y<2
If y>2 take x=yOR sothat f (x)=x=y.

y*2 4,

If y<2 take x=%2DR and x=

0 f(x):5x—2:SB?E— =y-

O f isasurjection.

Since f isnotaninjection, itisnot abijection.
6. Problem: Find the domain of definition of the function y(x), given by the equation
2%+ 2Y =2,
Solution: 2=2-2Y<2 (- 2Y>0)

0 log,2<log,2

(l x<1

[0 Domain=(-,1).

7. Problem: If f: R R isdefinedas f(x+y)=1f(x)+f(y) ox,yOR and f(1) =7,
then find if(r)_
r=1
Solution: Consider f(2) =f(1+1)=f(1) +f(1)=2f(1)
f(3) =f(2+1)=f(2 +f(1)=3f(2)
Similarly f(r) =rf(2)

SERIG

r=1

fL)+F(2) + ... +T(N)
(1) +2f()+ ... +nf (D)
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f(H(1+2+...+n)

_ In(n+1
= 5

2 !
8. Problem: If f(x)= = X*N X'y thenshow that £(2012) = L.
SN X+ C0S™ X
4
+
Solution:  f(x) = S5 X+ X
SIN® X+C0S” X
1-sin® x+sin* x
1-cos® x +cos® x

1-sin? x(1-sin®x)
1-cos? x(1—cos? x)

_ 1-sin®xcos® x
1-sin? xcos? x

=1
0 f(2012) = 1.

Exercise 1(a)

(X+2, x>1
I. 1. Ifthefunction f isdefinedby f (x):& , —1<x <1 ,thenfindthevalues of
Fk-1, -3<x<-1
iy f@Q, (i) £ (0), (i) f (-1.5),
(iv) £ @+f (-2, (v) £ (-5)

1
2. If f:R\{0} - Risdefinedby f(x)= X'~ thenshowthat f (x)+ f (1/x) =0.

2

3. If f:R - R isdefinedby f (x):%,thenshowthat f (tan6)=cos26.
+ X

1+x O 2x O
——, then show that f =2f (X).
1—x‘ H+x2H 9

4. If f: R~ {+1} - R isdefinedby f (x)=log



5 1fA={-2-1,01 3 and f:A - B isasurjectiondefinedby f (x)=x?+x+1, then
find B.

6. If A={12 3 4 and f:A - R isafunction defined by

X2 —=x+1

o= X+1

, then findtherangeof f.

7. If f(x+y) =f(xy) Ox Yy OR thenprovethat f isaconstant function.
1.1 FA={x|-1sx<},f (x)=x%, g (x) =x°, whichof thefollowing are surjections?

(i) f:A-A (i) g:A - A
2. Whichof thefollowing areinjectionsor surjectionsor bijections? Justify your answvers.

() f:R-R definedby f (=2t

i) f:R - (0,0) definedby f (x)=2"
(i) f : (0, ») » R definedby f (x)=log, x
(v) f :[0,0) - [0,x)definedby f (x)=x2
(v) f R [0, ) definedby f (x)=x
(Vi) f:R - R definedby f (x)=x?

3. 1s g={(11),(2,9,(35),(4,7} afunctionfrom A={1,2,3 4 to B={1,3,5,% ? Ifthisis
givenby theformula g (x) =ax +b, thenfindaandb.

3X + 3—X

4. Ifthefunction f : R - R definedby f (x) =
f (x+y)+f (x-y)=2f(x) f (y).

, then show that

X

4 . thenshow thet

5. Ifthefunction f : R -~ R definedby f (x):4X+

f (1-x) =1-f (x), and hencededucethevaueof f %ﬁ+2fﬁ% * ﬁ% '

6. If thefunction f :{-1, 3 - {0, P, definedby f (x) = ax+b isa surjection, then find
a and b.

0

7.0f £ (x)=cos (I then show that f D—igfmﬂﬂ(xy)a-o
: (X) =cos (logx) , H;H % ZD%_XE g=>

e
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1.2 InverseFunctionsand Theorems
If f isarelationfrom A to B, thentherelation {(b, )| (a, b) O f} isdenotedby f .

1.2.1 Theorem
If f:A - B isaninjection, then f™ isahbijectionfrom f(A) to A.

Proof: Let f:A - B beaninjection. clearly f *isareationfrom f (A) to A.

Let b f (A). Thenthereexistsatleast one alJA suchthat f (a) =b. Sincef isaninjection ‘a’ isthe
only element of A suchthat f(a)=b. Thusgiven b f (A),thereisauniqueelement a in A suchthat

(a,b)0f. Hencegiven b f (A) thereisaunique alJA suchthat (b,a)0 f ™. Hence f™ isa

functionfrom f(A) to A, and ™ (b)=a ifandonlyif f(a)=b. Clearly f™ isasurjection. If

b,b,0Of (A) and f™ (b)="f" (b,) =a(say) thenb =f (a) =h,. Thus f *isaninjection.
Of™*:f (A A isabijection.

1.2.2 Corollary

If f:A - B isabijection, then f " isabijectionfrom B to A.

Proof: Thisisanimmediate consequenceof Theorem 1.2.1, since f (A) = B.

Note: S’nce(f‘l)_1 =f,itfollowsfrom1.22that f™: B _ A isabijectionif andonlyif f: A _ Bis

abijection.

1.2.3 Definition (Inverse function)

If f:A - B isabijection, thentherelation f ™ :{(b,a)| (a,b) O f} isafunctionfrom B to
A and is called the inverse of f.

1.2.4 Examples

1.Example: If A={1,2,3, B={a b g then f={(Lc),(2b),(3a} isabijectionfromA to B
and f™={(a,3),(b,2),(c,1} isabijectionfrom B to A.

2.Example: If A={1,2,3, B a,b,c, § then f ={( c), (2 b), (3a} isaninjectionbutnot a
surjection, f ™ ={(c, 1), (b, 2), (a, 3} isardationfrom B to A but not afunctionbecause 'd'0B has
no f* imagein A.

3. Example If A={1,2,3,B{ ab ;then f={(L a), (2 b), (3 a} isasurjection but not an
injection, f :{(a, D, (b, 2), (a, 3)} isardationfrom B to A but notafunctionfrom B toA because
for allB therearetwo f *imagesin A.



1.2.5 Definition Composite Function A f B
If f:A-B, g:B- C, then the relation .
{(a,g (f (a)))|aDA} iscalled compositeof ‘g o
with‘ f’ and is denoted as gof . \
Fig. 1.3

1.2.6 Theorem: Let f:A - B and g:B - C befunctions. Then gof isafunctionfrom A to
C, and(gof) () = g(f(a)) foral allA.

Proof : Let alJA . Since f isafunctionfrom A to Bthen f(a)OB. Since g isa functionfrom B to
Cthen g( f(a))OC. Hence gof isarelaionfrom A toC. Further, given alJA thereisoneand only one
dement ¢ in C, namely, g(f(a)), suchthat (a,c) 0 gof . Hence gof isafunctionfrom A to C and
(gof) (@) =g(f(a)) foral alA .
1.2.7 Theorem: Let f:A - B, g:B - C beinjections, then gof : A - C isaninjection.
Proof : Let a,a, JA besuchthat (gof) (a) = (gof) (a,)
g(f(@) = 9(f(a))
f (a) = f(a,) [sincegisaninjection]
a = a, [sincef isaninjection]
0 gof : A- C isaninjection.
1.2.8 Theorem: Let f:A -~ B and g:B - C besuchthat gof isaninjection. Then f isan
injection.
Proof : Let a,a, A besuchthat f (a)=f (a,) then g(f(a))=9(f(a,))

0 gof (aF gof (a,)
O & a,.[.gof isaninjection]
O f isaninjection.

1.2.9 Note

If f:A - B, g:B - C aresuchthat gof isinjectionthen g need not beinjection. For example,
let A={1L3,B{ab},C§dle, f={(La),(2b} and g={(a d), (b e), (c e}, then
gof ={(1, d), (2 €} .
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Hence gof isaninjectionbut g isnot aninjection. However, if gof isaninjectionthen necessarily f
isaninjection.
1.2.10 Theorem: Let f:A - B, g:B - C besurjections. Then gof : A - C isasurjection.
Proof: Let cOC. Since g:B - C isasurjectionthenthereexists b[0B suchthat g (b) =c. Since
f: A - B isasurjectionthenthereexists ‘a'lL]A suchthat f (a) =b.
O gbF g(f@)= (gof) (a).
O foreach 'c'0C thereexists 'a'[JA suchthat (gof) (a) =c.

Hence gof : A - C isasurjection.
1.2.11 Theorem: Let f:A - B, g:B — C besuchthat gof isasurjection. Then g isasurjection.
Proof : Let cOC. Since gof : A — C isasurjectionthenthereexists alJA suchthat (gof) (a) =c,i.e,
g(f(a))=c. Letb=f (a).Then f (a)=b0B and g (b) =c.
U g isasurjection.
1.2.12 Note

If f:A - B, g:B - C aresuchthat gof isasurjectionthen f need not beasurjection. In Note
1.2.9, gof isasurjectionbut f isnot asurjection. However, if gof isasurjectionthen necessarily ‘g’ is
asurjection.

1.2.13 Theorem: Let f:A - B, g:B - C behijections. Then gof :A - C is abijection.
Proof: Thisisaconsequenceof Theorems1.2.7 and 1.2.10.

1.2.14 Theorem: Let f:A — B, g:B - C bebijections. Then (gof )™ = f “og™.

Proof: Since f:A - B, g:B - C arebijections, sois gof from A toC (from Theorem 1.2.13).
Hence (gof)”lisabijection from C to A. Further, f*:B _ A: g™:C - B arealso bijections.
Hence f "'og™ isahbijectionfrom C to A.

O Thefunctions (gof )™ and f og™ aredefined onthesamedomain‘C'.

Let cOC. Since g:B - C isabijection, thereexistsaunique bOB suchthat g (b)=c i.e,
g7 (c)=b.

Now b[IB and f:A - B isabijection. Hencethereexistsaunique alJA suchthat f (a)=b
i.e, f*(b)=a.



Thus c=g (b) =g(f(a)) =(gof) (a) (or) (gof)™*(c)=a

Now (fog™)(c) = f(g™(c) = 1 *(b) =a

Hence (gof )™ = f og .
1.2.15 Theorem: Theidentity function 1,,: A - A isa bijectionand 1;* =1,.
Proof: Wehave 1, ={(a, a) |a DA} .

Given alJA wehave | ,(a) = a. Hencel ,isasurjection.
Let a,a, JA, I(aF l.(a,)J = a,. Hencel,isaninjection.
O1,:A- A isbijectionand I* =1,.
1.2.16 Theorem: Let f:A - B, I,and I;beidentity functionson A and B respectively. Then
fol , = f =10f .
Proof: Since 1,:A - A and f:A - B arefunctions, fol, isafunctionfrom A to B. Hence
functions fol , and f aredefined onsamedomainA.
Let adA, then (fol ) (@)= (1.(a))=f(@) [" 1, (a) =a foral alA]
Ofolg f (D)

Since f:A - B, 1;:B - B, arefunctionsthen | ;of isafunctionfrom A to B.
U Thefunctions | ;of and f aredefined onthesamedomainA.

Let alA  then (1,0f) (@) = 1,(f(@) = f(@[- f:A - B wehave f(a)B]

OlgoE f (2

From (1) and (2) wehave fol , = f =10f .

1.2.17 Theorem: Let f:A - B be abijection. Then fof =1, and fof =1,.

Proof : Since f :A — B isabijectionthen f :B . A isasoabijection. Hence fof " isabijection

from B to Band f "'of isabijectionfrom A to A. Wehavethat |, isabijectionfrom B to B and | ,
isabijectionfrom A to A.

[0 Thefunctions fof * and |, aredefined onthesamedomainB.
Let bOB. Since f:A - B isabijectionthenthereexistsaunique allA suchthat
f(@ =bie, fb)=a.
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Thus fof (b) = f(f™(b))=f(a) =b =1,(b)
O fof ™= 1y
Thefunctions f “of and |, aredefined onthesamedomain.
Wehave fof (a) = f*(f(a))=f *(b) =a =I,(a)

O fof= 1,.
1.2.18 Theorem: Let f :A - B beafunction. Then f isabijectionif and only if there exists a
function g:B — A suchthat fog=1, and gof =1, and, inthiscase, g = f ™.
Proof: Let f:A — B beabijection. Then f *:B _, A isabijection[fromCorollary1.2.2]. Teke g = f .
Thenfrom Theorem1.2.17, fog =1, and gof =1,.

Conversdly, if thereexistsafunction g: B — A suchthat fog =1, and gof =1, then gof =1, isan
injection, weget from Theorem 1.2.8that f isaninjection. Also, since fog = | ; isasurjection, weget from
Theorem 1.2.11 that f isasurjection.

0O f:A- B isabijection. Hence f *:B — A isabijection. Wedsohave g:B - A.
O f * and g aredefined onthe same domain B.

Let bOOB. Since f : A — B isabijectionthenthereexistsaunique 'a'[JA suchthat f(a) =b or
f*(b)=a. Now
f*(b) =a=1,(a) =(gof) (a) =g(f(a)) =g (b)
Og .

1.2.19 Theorem: Let f:A - B, g:B - C and h:C — D. Then ho(gof) = (hog)of , that is,
composition of functions is associative.

Proof: Since f: A - B, g:B - Candh:C-D,
gof :A - Candh:C - D Oho(gof):A- D. Further

f:A-B adhog:B - D O (hog) of : A> D.
Thus ho(gof ) and (hog)of havethesamedomain A. Let ‘@ beany element of A. Now

[ho (gof)] (a) =h((gof) (@) =h(g(f(a))) =(hog)(f (a)) =((hog)of ) (a)
O ho (gof ¥ (hog)of .



1.2.20 Solved Problems
1.Problem: If f:R - R,g:R -~ R aredefinedby f (x)=4x-1and g (x) =x*+2 then find

0) (@) 00 (i) (oh)
(iii) fof (x) (iv) go( fof )(0).
Solution
(i) (gof) () =g(f(x)=g (4x-1) =(4x -1)* +2 =16X* -8X +3 .. (1)
(i) from(l)wehave(gof)ﬁa%lﬁzlﬁﬁ%ﬁ _ﬁ +3=a% 42
(iiiy (fof) () =f(f(x))="f (4x-1 =4 (4x -1) -1 =16x 5 .. (2

(iv) from(2) wehave (fof ) (0)=0-5=-5
Ogo(fof) (Gr g(fof (O)F of 5F 25 2= 27.

2. Problem: If 1:[0,3 ~[0,d isdefined by f(x)=§;):(’gj:§§ , then show that

f[0,31 O[O0, 3] and find fof.
Solution: 0<x<?2 O 1<1+x<3 .. (1)
2<x<3 OO0 -3<-Xx<-2
0 3-3<3-x<3-2
0 0O0<3-x<1 )
From (1) and (2), f[0, 3] O [0, 3].
When 0 < X < 1wehave
(fof) (= (f(¥)=f@+x) =1+1+x =2 +x [ 1<l +x <]
When 1< x <2 wehave
fof () =f(f(¥)=f@+x) =3-(1+x) =2 x [2 < +
When 2 < x <3wehave
fof () =f(f(¥)=f(3-x) =1+3-x =4 X [-0 3% <]
[R+Xx 0<x<1

O(fof) 0F B x & x 2
Efl—x,2<xs3
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0 if xOQ

3. Problem: If f,g: R - R aredefinedby f(x) = %L it x00
if x

and g(x) = _ . H then find (fog) (1) + (gof )(e).
O x0Q

Solution: (fog) (M) = f(g(m) = f(0)=0

(gof) () = g(f(e) =9()=-1
0 (fog) () +(gof) (¢) =-1.

4. problem: Let A={123,B{abf,C§E pgr .1ff:A - B, g:B - C are defined by
f ={(@a), (2.c), 3Bb}, g (aa),(b.r),(c,P thenshowthat f ‘og™= (gof)™.

Solution: Giventhat f ={(La), (2,c), (3b} and g={(a,q), (b,r), (c, p} then

gof ={(La), (2 p), Br} O (gof)= { (a2, (p.2), (r.F .

g™ ={(a.a), (r,b), (p.c}, f*  (@D.(c,2), (b.F then

fog™ ={(a.1), (r,3).(p.2} .
O(gof )= fog™.
5.Problem: If f:Q - Q isdefinedby f (x)=5x+4 for all x0OQ, showthat f isa bijection and
find 1.
Solution: Let x, X, 0Q, f(xF (X 5S¢ = 5% [ =x X.
O f isaninjection.

Let yUQ. Then x:y%A'DQ and

f(x)=f %:%y—;‘é +a=y,
O f isasurjectionand hence f isabijection.
Of™*:Q Q isabijection.
Wehave fof * (x) =1 (X)
f(F7(x)=x
5f H(X)+4=x

£ (x):x—;“foral x0Q .
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10.

Exercise 1(b)

If £ (x)=e*and g(x) =log, x, thenshowthat fog = gof andfind f *and g*.

If f(y)= , 9(y)=
\/ -y \/1+y

If f:R - Randg:R - R aredefinedby f (x)=2x*>+3 and g (x) =3x-2, thenfind
(i) (fog) (¥), (i) (gof) (0, (i) fof (0), (iv) go (fof) (3).

If f:R -~ R, g:R - R aredefinedby f (x) =3x-1, g (x) =x* +1, thenfind

(i) fof (x*+1), (i) fog (2), (i) gof (2a-3).

If f(x)=%, g (x) =v/x forall x0(0p ), thenfind (gof) (x).

————— thenshow that (fog) (y) =vy.

+1
If f(X)=2x-19 (X =XT foral xOR, thenfind (gof ) ().

If £ (x)=2, g (x) =x3h (X) =2x foral xOR ,thenfind (fo (goh) (x)).
Findtheinverseof thefollowing functions.

() ablR, f:R- R definedby f (x)=ax+b (az0).

()  f:R - (0,)definedby f (x)=5".

()  f:(0,0) -~ R definedby f (x)=1log, X

If £(0)=1+x+x+.... for [x|<1 thenshow that f(x) _X_l

If f:[1, )~ [1, )definedby f(x)=2"*"Dthenfind f~ (x).

If £ (x)= X—Jri x # +1, thenverify fof ™ (x)=x.

IfA={123,B{ a8}y .Cf pahr and f:A - B, g:B - C aredefined by

f={@a), 2y), BB}, 94 (@.a), BNV D .
then show that f and g arebijectivefunctionsand (gof )™ = f ~og ™.

If f:R - R,g:R - R definedby f (x) =3x-2, g(x) =x* +1, thenfind
(i) (gof M(2), (i) (gof) (x-1).

Let f ={(La), (2.0), (4,d), (3b} and g™ ={(2.a), (4.b), (L0), (3.d} ,
then show that (gof )™ = f og™.
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5 Let f:R - R, g:R - R bedefinedby f (x) =2x-3, g (x) =x° +5 thenfind (fog)™ (x)-

6. Let f (x)=x% g (x)=2". Thensolvetheequation ( fog) (x) = (gof) (X).
7.1 f(X) :i—j (x # 1) thenfind ( fofof ) (x) and ( fofofof ) (x) .

1.3 Real valued functions (Domain, Range and I nver se)

If X isany set, f:X - R then f iscalled areal valued function. For example let
b
48 bo a,b,c,d DR%,define f:X >R by f (A)=det A forall AOX,

X:§}<ﬂ g

then f isareal valued function.

Inthissectionafunction f isdefined through aformula, without mentioning thedomain and therange
explicitly. Insuch cases, thedomainof f istakentobetheset of al real x for which theformulais
meaningful. Therangeof f istheset{ f (x) | x isinthedomainof f}.

1.3.0(a) : n" root of a non-negativereal number

Let x beanon-negativereal number and n beapositiveinteger. Then there exists aunique non-
negativereal number y suchthat y" = x. The proof isbeyond the scope of thisbook. Thisnumberyis
called the n'" root of x and is denoted as x¥" (or) ¥x .

When n =2, ¥/x iscaledthesquareroot of x. ¥/x iswrittensimply as /x .

If xisany real number and nisan odd positive integer there exists aunique real number y such that
Y= x so that wewrite y =¥ or xn.
1.3.0(b): @ when 1 # a> 0 and x isarational number:
1
f1#a>0ad x="2 wherem, nareintegersand n> 0 we define a* = (a’“)”.
n

1.3.1 Examples
1. Example: Thedomainof thereal valuedfunction f (x) =+a? -x* (a>0) is[-a, a] .

[Snce V& —-x* OR, (& 0)= a* x= 0= xx a’= | a=- & x a].

2. Example: Thedomain of therea valued function f (X) =

. 0 10
ISR\ .
ox+1 - H A

Esmce ! DRe 2% ¥ 0o w- E
2x+1 2H



1.3.2 Algebraof real valued functions

If f and g arerea vaued functions with domains A and B respectively, then both

f and g aredefinedon AnBwhen AnB#¢@.

s

@

(i)

(i)

Let f:A - Rand g:B - R. Supposethat A n B# @, wedefine
f+g, f-gand fgonAnBas(fxg) (x)=f (x)xg(x) and

(fg) () =1 (x)g (x).

Let f:A - R and c beaconstant functiondefinedon A. Thenfromthe
abovedefinition (f +c) (x) = f(x) +c and (cf) (x) =cf (x) foral xOA.
Thefunction (-1) f isdenoted by —f.

f
Let E={x0An B|g (x¢ (= ¢. Wedefine i E by

%ig(x) ARG foral xOE. Notethatif g (x) =0, then LG isnot
090 g () g (%)
defined.

Let f:A - R and nON. Wedefine|f| and " on Aby |f| (x) =|f (X)|

and f"(x)=(f(x))" foral xOA.

(v) If E={xOA|f(xe G# @ thenwedefine /f onE by

JF 0=Jf(¥), foral xOE.

Inview of theabove, we can concludethat if f, g aredefined ontheir

respective domainsthen
domain (f+ @) = domain of f n domainof g
domain (fg) = domainof f n domainofg
0f O

domain EEE = domainof f n domainofg n {x:9g(x) # O}

domain (/f) =domainof f n {x:f(x) > 0}




1.3.3 Solved Problems
1. Problem: Find the domains of the following real valued functions.

1
0 f®= g-oe (i) 109 = J%az(aw)

X

@i ) = J(x+2) (x-3) (v) f(¥) ={(x-a) (B-x(0<a <B)
5 1

V) F0) = J2-x+Tx (Vi) () = VX ‘1+m

Gi) () = — (vii) ()= y[X-x

[ =x
Solution
h f=— =1  fRe 1 x¢o
6x-x* -5 (x-1) (5-X)
= X#15
U Domainof fis R\{1,5}.
1

R x* a> 0

i ) =5—
X" —a

= (x—a)(x+a)>0

= X<-a(or) x>a

o xO0fw - a (@ )

0 Domainof fis(-c0,—a)0 (a0 F R\ [-a,a].

(i) f(x) =J(x+2) (x-3) OR = (% 2) (x 32 0

= X<-2 or X223
= xOfeo + 2 [8 9 R\ (-2 3)
0 Domainof fis(~e,-2]0[30 ¥ R\ (-2, 3).
vy f(X)=yJx-a)(B-x)OR < (¥ a)(B x= 0
= asxsf (ra<p)
= x0O[a, B]
0 Domainof fis[a,B].
V) f(X)=v2-x+/1+xOR = 2-x20 and 1+x=0
= 22x and x=>-1
e —1<x<2

= xOf 12]
U Domainof f is[-1, 2].
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Vi) f(x)=v 2—1+; Ro x> T 0 and x*-3x+2>0

VX2 =3x+2

= (x+1) (x-1) =0 and (x-1) (x-2) >0

= XOfeo + 1P [ ) and xO¢e 20 (& ).
o XxOR~N(-1,1)n (RN[1,2]).

- xOR~{(-17)0[1.2}

= XORN (1,2 =(=o0, 1] O(2%0 ).

O Domainof fis (-0, -1] O (2,0 F R~ (-1,2].

Vi) (=2 ORe ¥ » 0- | x
=%

= X0t ,0).

[0 Domainof f is (-, 0) .

Wii) f () =y|X¥-xOR <= |x % 0,whichistrueforal xOR.

U Domainof fisR.

2.Problem: If f ={(4,5),(5,6),(6,~4)} and g={(4,-4),(6,5),(85} thenfind

(i) f+g (i) f-g (iii) 2f + 4g (iv) f+4
(v) fg (vi) /g (vii) | f| (viii)
(ix) f? x) f3

Solution: Domainof f =A ={4,5,6 , Domainof g = B={4,6,§ .
Domainof f+g=AnB={4,6 .

() f+g={(45-4),(6 -4+5} £ (41, (6 ad

iy f-g={(45+4),(6,4-5} £(49),(6 9 .

(i) Domainof 2f =A ={4,5,§ , Domainof 49 =B ={4,6,3 .
D2& {(410), (512), (6; 8}, 45 { (4 16), (6,20), (8,20 .

Domainof 2f +4g ={4,6

O2f 4g {(4106 16), (6- & 20)={ (4~ 6),(6,19) .



(v) Domainof f+4=A={45¢§
f+4={(4,5+4),(56+4),(6, 4 +4} £ (4,9),(510),(6,0 .
(v) Domanof  fg=AnB={44
fg ={(4.(5) (-9).(6.(-4 (5} ={(4, 20), (6,20} .

(vi) Domainof é={4,€}.

o fo 09, -500, AL

g o a0H” s

(i) Domainof |f|=A={458.

O|f+ {(4,5), (5,6), (6,4} .
(vi) Domainof \[f ={4,3 .

0yE {(45), 5.6} .
(x) Domanof f?=A={458§.

0 f% {(4,25),(5,36),(6,16}) .
(x) Domanof f*=A={458¢.

0 f& {(4,125), (5216), (6; 64} .

3. Problem: Find the domains and ranges of the following real valued functions.

=232 (i)t == (i) f (%) =9 -x

2—-X 1+ X
Solution
. 2+ X
i
0 >
0 Domainof f isR\{2}.

ORe 2 % 0= % 2« X R~{2}.

Let f (x)=yD 2+X 7 =x 2(y-1) clearly, x isnot defined for
2-x (y+1)

y+1=0i.e,when y=-1. [ rangeof f=R~\{-1}.

X
1+ x?

(i) (%)=

0 Domainof fisR.
If x=0 then f(x)=0, If x Z0thenf(x) # O.
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OR < X R isdefinedfordl x[IR,sincex2+1¢0for xOR.



2

X 1+./1-4y

Let y:f(x):1+X2 Oxy x y O =x isarea number
iff 1-4y*>0 = (1+2y) (1-2y) =0;
+1 1t
0 , =
Y B2 o
1 10O

O rangeof f = y—r-
0 H2 28
(i) f (=v9-x¥*0OR<= 9 x= 0
= (3+x) (3-x=20 = xOf 33.
O domainof f=[-33.

Clearly f(x) =o-x*[[0,3]- Suppose y [0, 3.
Then x=/9-y? 0[0,3] and f(x)=,9—-(9-y?) =y.
0 rangeof f =[0,3.
1.3.4 Some more types of functions

1. Evenand odd functions: Let A beanonempty subset of R suchthat —xJA for all XA and
f:A-R.
() I f (=x)=f (x) forevery x in A then f iscalled an even function.

(i) If f(-x)=-f(x) forevery x inAthen f iscalledan odd function.

Examples
() f(x)=x% g(x) =cosx, h(x) =|x (x OR) areall evenfunctions.
(i) f(x)=x, (xOR) isanoddfunction.

g (x) =tan x isan odd function on R\ém]T+1 I, nDZ@.

(iii) f(x)=x>+x% g(X) =cosx +sinx areneither even nor odd.
Every real valued function defined on anonempty subset A of R suchthat xOAF [x A canbe
written assum of an even and odd functions.

f(X)+f (%) and h (x) = f(x)-f (%)
2 2

Consider g (x) = then g isevenand h isodd since

g(¥)=g(-x) and h(x) =-h(-x). Clearly
f(x)=9(x)+h(x).
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2. Polynomial function : If n isanon negativeinteger, a,, a, a,, ....,a, arereal numbers (at least
one g # 0) then the function f defined on R by

f (X)=a, +ax+a,x’ +...+a x" for all xOR iscalled a polynomial function.
Examples
() f (x)=ax+b (a,bOR) isa polynomia function.
(i) g(x)=-7x*+3x* +2 is a polynomia function.
() h(x)=k (0#£kOR) is a polynomial function.
3. Rational function: If f and g arepolynomial functionsand g (x) # 0 for all XUR then the

function il defined by ELB(X): T () s called a rational function.
9 090

g (¥
2 isarational function.

2

X
Examples: 1.
P X2 +1

2. f(x) = l, xR \{0} isarational function.
X
Yi

Fig. 1.4 Graph of

4. Algebraicfunction: Operationslike addition, subtraction, multiplication, division and extraction
of squareroot etc., are called algebraic operations. A function obtained by applying a finite number
of algebraic operations on polynomial functionsis called an algebraic function.

Examples: (i) f (x)=3x2+2— ‘Xg_xz (xOF 3,3 ~{0}).

(i) f () =+vx*=a® +7x, (a>0), (x OR \ (-a,a)).



5. Exponential function: Thefunctiona*when1 z a> Oand x isrational, isalready defined in this
chapter. This can be extended to real x aswell, inheriting all the exponential properties. We do not
present a formal definition of a* (x OR ) but assume the existence of such a (unique) function. This
function is called an exponential function. Even though the definition presented in chapter 9 is
dightly different, these two are equivalant. The domain of the function a*is R and therangeisR™.

Y1

Y | Y4
y=a,(a>1)
y:axy(a:]_) // y:aX,(0<a<1)K
0 X 0 X 0 X

Fig. 1.5 graph of a*

6. Logarithmic function: If a> 0,a #1, giveny > Othereisauniquex OR suchthat a‘=y.
The function defined on R™ by f(y) = x, where a* = vy, is called the logarithmic function to the

base ‘a’. Thisfunctionisdenoted by log,. Thus log,y = x iff a‘=vy. Thelogarithmic function to
the base e iscalled the natural logarithmic function and is denoted by ‘log’ and also In. Thus
logy=Iny=x iff & =vy. Clearlythe domain of log, functionis (0,). Further itsrangeis R.

Y i
Y i
y=log, x, (@a>1) y=log,x (0<a<l)
- 0 =
0 X X

Fig. 1.6 Graph of log, x

7. Greatest Integer function: For any real number x, we denote by [X] , the greatest integer |ess than or
equal to x. For example [1.72] =1,[-3.41] = 4, [0.22] = 0, [-0.71] = -1.
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The function f:R - R defined by f (X)=[x] for all xOR is called the greatest integer
function. The domain of the greatest integer functionis R and therangeistheset Z of all integers.

Y A

2 - —

Fig. 1.7 Graph of greatest integer function

8. Modulus function : The function f: R _ R defined by f(X) = |x| for each x(OR is called
modulus function. For each non-negative value of x, f(x) isequal to x. But for negative values of

X, thevalue of f(x) isthe negative of the value of x i.e,

Ox x=20
f(x)=0
[TX X<0
Thegraphis
Yk
y=Ix|

Fig. 1.8 f(X) =|x|



9. Signum function: Thefunctionf : R . R defined by

0 1 x>0

sgn(x) = f (x) :%':E 0, x=0 iscalled signum function. The domain is R and range is

H—l x<0

{-1,0, 1}. "

y:—]_ -1

v
Fig. 1.9 Graph of Signum function

1.3.5 Solved Problems

1. Problem: If f (x)=x% and g (X) =|¥, find the following functions.

(i) f+g, (i) f-g (i) fg,  (v) 2f, (V)2  (vi) f+3

x=0

Solution: Giventhat f (x) = x%, g (x) =[] :S(’ ,domainf = domaing= R. Hencethedomain
[TX X<O0

of al thefunctions(i) through (vi) isR.

0 (F+0) (=1 ()+g () =X +x =0 20
X" —X, Xx<0
. Z-x, x=0
i) (T-g) (=1 (M-g () =X 44 =, >
X +X x<0

3’ _0

i) (fa) 09=F (9g 0= =F " *>
X, x<0

(iv) (2f) (x)=2f (x) =2x>.
V) 2 =(fM) =032 =x".
M) (F+3)(x)=f (x)+3=x* +3.
2. Prablem: Determine whether the following functions are even or odd.
Le* —10

(i) f (x)=a*-a> +sinx, (ii) f (x):prTﬂg,
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(i) f (x) =log (x+y52 +1)
Solution: Clearly inall thecasesdomain f = R
(i) Wehave f (x)=a*-a™* +sinx
Of€ xr a% a% sinf xF a* a~ snx- (@~ a*+snx)=-f (X)-
O f isanoddfunction.

i f () Ue* —10
i X) = X
Eex+1H
L™ —10 Ui1-¢U 0O e -
f(=X)=(X0—0=X01—8 =8 10 =f (¥,
Ce*+1g  pgl+ep [ e+
0O f isanevenfunction.

(i) f () =log (x+Vx2+1) O f£ xF logt % Vx* 1)

E(xh/ X2 +1) (—X +y X +1)E
B (x+¥+) B

Ox?+1-x* 0O
= log Dmmzlog(x +4x% +1)7!
DX +VX* +10

Of€ xXF- log(¢ vx& 1F- f (X).
O f isanoddfunction.

O f{ xF log

3. Problem: Find the domains of the following real valued functions.

1
i e

e —_ EB_XD i 1
J3+x +/3-x
X

(i) f(x)= (i) T (x)=log(x-[x])

(V) f (x)=
Solution
1
M f=—=———e
(R

OR- [{=[4 2 0

= ([(4+3)([{-2)>0

= [{<-1 (on) [¥]>2.



Functions

But [X]<-1 0 [¥-2 3 4.....00<x 1
[X>2 0 % 345...0=x 3
0 Domainof f =(-c,-1) O[3 F R\[-1,3).
(i) f=log(x-[x])OR= x [xp 0= » [¥

= X isanon-integer
U Domainof f isSR\Z.

- - 3-X
(i) f (%)= |ogloé'¥ﬁm@ Iogm§3—x)%2 0and == >0
o 37X510°=1 and 3-x>0, x>0
X

= 3-x=2x and 0<x<3
= x<3/2and 0<x<3

0 30

0. 3
- XDHoo SF (O, 3F %o, e

0 Domainof fis ﬁ) g%
(V) f(Q=vx+2+— L  OR- w 2 0andl-x>0ad1-x#1
log,, (1—X)
= X2-2and 1>x and x#0
= xOF 20 h o D\{G = xOf 221)\{g
0 Domainof fis[-2, 1)\ {G .

V3+ X +4/3-X
X

V) f(x)= OR= 3 % 0,3 % 0,% 0

= —3<x<3 x#£0

SEEEE NG

0 Domainof fis[-3,3 \{d .
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Exercise 1(c)

1. Findthedomainsof thefollowing real valued functions.

: _ 1 _ B 2X* =5x+7
O T8 = ey (xvg W10 = 2y (x-2 (x-3
! . ol
(i) fx) = oy 2= iv) f() = |x-3
V) () = Jax-x? V) f() = 1i 2
(vii) f(x) = x:1 (i) () = Jx*-25
() 9 = x-[x 0 f) = J[x-x
2. Findtherangesof thefollowing real valued functions.
., sinm[¥
(i) log|a-x?| (i1) [ = x (”')W
(iv) 222 (v) o+

3. If f and g arerea valued functionsdefinedby f (x) =2x-1and g (x)=x* thenfind

_ ) . oJfo
(i) 3f-29) (0 (i) (fg) (1D @jﬁ(x)
(iv) (f +g+2) (x)
4.1fF £ ={(@12), (2-3), (3 -1} thenfind

(1) 2f (i) 2+ f (iii) f2 (iv)\/T
1. Findthedomainsof thefollowing real valued functions.
(i) f(x)=vx2-3x+2 (i) f (x)=log (x* —4x+3)
N2+ X+2-X . _ 1
W YO e geg, 0
(V) f (X) 1’[ ]+ (Vl) f (X)z\/logo.s (X_XZ)
(vii) f(x)=

X+|><|



X

X

2. Prove that the real valued function f (x)=
R~ {0}.

3. Findthedomainand rangeof thefollowing functions.

X . )
1+§+1 is an even function on

() =

tan 11| ; X _
1+sin ”[X]*'B(ZH (i) f (X)_2—3X (i) £ X _‘x‘ +‘1+X‘

% If f:A - Bisafunctionthen f (A) ={f (a)|aDdA} iscaledtherange f. Itisasubsetof B,

and isdenoted by Rangef.
<« f:A - Bisaninection « a,a,0A, f (aF f (&) implya =a,.

% f:A - Bisaaurjection - rangef=codomainB - forany b0B thereexistsatleast one

alJA suchthat f (a)=b.
% f:A - Bisabijection = f isbothaninjectionandasurjection.

< If f:A - Bisabijectionthentherdlation f *={(b, a) | (a, b) O f} isabijectionfromBtoA

andiscalled theinversefunction of f.

% Let f:A - B, g:B- C be functions then (gof):A - C is a function and
(gof) (@) =g(f(a)) foral ald A,

<« If f:A - B, g:B - C aebijectionssois (gof): A - C and (gof )™ = f *og*.
< If f:A - B isabijection,then fof " =1, and f "of =1,.
< If f:A - B, g:B- Caresuchthat gof =1,, fog =1; then f isabijectionand g = f .
< Let A beanonempty subset of R suchthat —xJA foral xUUA and f:A - R.
@) If f (-=x)=1f (x) foral xOA then f iscaled anevenfunction.

(i) If f (-x)=-f (x) foral xOA then f iscalled an odd function.




Mathematics- 1A

Historical Note

Thehistory of theterm “ Function” furnishesan interesting example of theenthusiasmin
mathemati ciansto modify, refineand generalizetheir concepts.

Theword “Function” seemsto have been known to Descartes (1596 - 1650) in 1637,
who employed theterm smply to mean somepositiveintegra powers, x", of avariablex. Somewhat
later, Leibnitz (1646 - 1716) employed the term to denote any quantity connected with acurve,
such as the coordinates of a point on the curve, the slope of the curve etc. Johann Bernoulli
(1667 - 1748) regarded afunction asany expression made up of avariable and some constantsand
Euler (1707 - 1783) gave asymbolic representation asf(x) to afunction. Euler’sconcept remains
unchanged till Fourier (1768 - 1830) has modified the earlier definition of afunction in his
investigationsof trigonometric series. Theseseriesinvolveamoregenerd typeof relationship between
variablesthat had previoudy been studied and have becomeinstrumenta in hisattempt tofurnishthe
present definition of function broad enough to encompass such relationshipsby LeeuneDirichlet
(1805 - 1859).

Answers

Exercise 1(a)

. 1 ()5 (ii) 2 (i) -25 (iv)1 (v) Not defined
5.{3,1,7}
II. 1. (i) fisnotasurjection (i) g isasurjection
2. (i) bijection (ii) bijection
(i) bijection (iv) bijection

(V) not aninjection but asurjection (vi) neither injection nor surjection

3. a=2 b=-1 5 2 6.a=*1,b=1



. 1

w

N

. 1

. (i) 18x*—24x+11
(iv) 2653

- () 9x*+5

(i) RN{-1 1, -3}

(i) (-o,2)\{3
(v) [04]

(Vi) R\ {-1}
(ix) R

(i) R

(iii) {0}

(V) [3, )

(i) —2x*> +6x-3

N2x-1
2

X

(iii)

£ 7(x) =log, x, g™ () =€

Exercise 1(b)

(ii) 6x° +7 (iii) 21
(i) 14 (ili) 36a* —120a +101
6. X 7. 2
(i) logs x (iii) 2*
mx-701"°

(i) 9x*-30x+26 5. BTH

7. f(x),x

Exercise 1(c)
(i) RN{1 2 3}
(iv) R
Vi) (-1,1)
(vii)) R\ (-5, 5,)
x) z
(i) {0}

(iv) RN {4}

(i) 2x*-x?

(V) (x+1)?
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4. () {@a),(2-6).6-2} (i) {@4), (2-1).(32}
(i) {@4), (2.9),(3.1} iv) {@v2)
1. 1. (i) RN(L2) (i) R\[L 3]
(iii) [-2, 2] \ {0} (iv) (—o0,4) \{2, 3}
(v) (-e0,-2)0Of 1.2], (vi) (0,2)
(Vi) (0, e)

3. () Doman R, range{0}

1

7

(i) DomainR\ 3], RangeR \

O
w
O

(i) Domain R, range[1, »)



Chapter 2

Mathematicall Induction

which is called induction”

— Laplace

I ntroduction

A famous Italian Mathematician, Peano
defined a function f: N - N as f (n) =n+1
which is known as Peano successor function. He
obtained some algebraic properties of the set N of all
natural numbers by using this function f in his
axiomatic approach. One of hisaxiomsisknown as
Inductive axiomor Induction Theorem.

To understand the basic principles of
mathematical induction consider thefollowing simple
example.

Suppose a set of bicycles are placed, very
closely adjacent to each other.

When thefirst bicycleispushed in aparticular
direction, all the bicycleswill fall in that direction.

“ Analysis and natural philosophy owe their most
important discoveries to this fruitful means,

Laplace
(1749 - 1827)

Pierre Simon de Laplace was a
French mathematician and
astronomer whose work was pivotal
to the development of mathematical
astronomy. His most outstanding
work was done in the fields of
celestial mechanics, probability,
differential equations, and geodesy.
His five volume work on celestial
mechanics earned him the title of the
Newton of France.
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To beabsolutely surethat all the bicycleswill fal, itissufficient to know that
(a) thefirstbicyclefalsand
(b) intheevent that any bicyclefalls, itssuccessor necessarily falls.
Thisistheunderlying principleof mathematica induction.

Mathematical Inductionisapowerful tool frequently used to establish thevalidity of statementsthat
aregivenintermsof the natural numbers.

Theinductive aspect is concerned with the search for facts by observation and experimentation.
For example, weall know thefact that “ Sunrisesintheeast”. How canwe say thishappensaways? By
observing thisphenomenon from ages, we concludethat thisgoeson. Thus, wearriveat aconjecturefor
ageneral ruleby inductivereasoning.

2.1 Principlesof Mathematical I nduction & Theorems

Here under we state the well-ordering principle of the positiveinteger, which can be used for the
proof of principleof finite mathematical induction. However, we do not attempt to prove thesetheorems
at thisstage. Studentswho aspireto choose mathematics as major subject at the degreelevel have an
opportunity to learn the proof of both these theorems, thewell-ordering principle and the principle of finite
mathematical induction.

2.1.1 WEell - Ordering principle

Any non-empty set of positiveintegershasaleast element.
2.1.2 Principle of finite mathematical induction

Let S beasubset of N such that

1. 108
2. Forany KON, kOSO k+1 S.
Then S = N.

2.1.3 Equivalent forms of principle of finite mathematical induction

Principleof finite mathematical induction hasagood number of equivalent formswhichareusedin
appropriate occasions. Three of them are stated herein 2.1.4, 2.1.5 and 2.1.6. We present proof for
2.1 5asitisanimmediate consequenceof 2.1.2, the principleof finite mathematical induction and leave
the othersasexercises.
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2.1.4 Statement : Foreach n O N, let P(n) beastatement. Suppose that
(i) PQ)istrue.
(i) forany k ON, if P(K)istrue, then P(k+ 1) istrue.

Then P(n) istrueforall nON.

2.1.5 Principle of complete mathematical induction

Let S beasubset of N such that

() 10s
(i) forany kON, {12,3..,80 8 +kO1 S
Then S = N.

Proof: LeeT={mON:1,2 .. m0S}
Then10OS 0o 10T and
nOTo 1,2,.,n0S
O (n+1)OS
o (n+1)O0T
By the principleof finiteinduction (2.1.2), it followsthat T = N.
O N=T O S. But by hypothesisS U N.
Accordingly S=N.
2.1.6 Statement : Foreach nON, let P(n) beastatement. Suppose that
(i) PQ) istrue
(i) forany kO N, if P(1), P(2), ..., P(k) aretrue, then P(k+ 1) istrue.
Then P(n) istrueforal nON.

It may happen that statements P(n) arefalsefor certain natural numbersbut they aretruefor all

n = n, for someparticular n,.
For example, the statement P(n) = (n— 1) (n—3) (n—5) isapositiveinteger istruefor all n>6 but
nottruewhen n=1 or n=3 or n=4 or n=5. However itistruefor n=2also. The principle of
mathematical induction can be modified to deal with this situation. We will formulate the modified

principle, without proof.
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2.1.7 Principle of mathematical induction (Modified version)
Let n, O N andlet P(n) beastatement for each natural number n = n, . Suppose that

(i) Thestatement P (n,) istrue.
(i) Foral k=n,, P(k) istrue O P(k +1) istrue.
Then P(n) istrueforal n=n,.

2.1.8 Stepsto prove a statement using the principle of mathematical induction

Thestarting point or basisof inductionisusually 1, but could be negativeinteger, positiveinteger or
zero. Normally we expect to provethat P(k) U P(k+ 1). Sothereare 3 stepsto prove a statement
using the principle of mathematical induction.

1. Basisof induction : Showthat P (1) istrue.
2. Inductivehypothesis : For k =21, assumethat P (k) istrue.
3. Inductivestep : Showthat P(k + 1) istrueon the basis of

theinductive hypothesis.

L et usconsider an example from which we observethat the principle of mathematical inductionis
only amethod of proof for aknown or guessed or predicted formulaand it isnot atool for finding such
formula

2.1.9 Example
Let S(n) =1+2+3+ - +n.

Let usexamineafew valuesfor S(n) andlist theminthefollowingtable:

n 1| 2 3 4 (5|1 67|38 9|10 11

Sn)| 1| 3| 6 |10]|15|21|28|36| 45| 55| 66

To guessaformulafor S(n) may not be an easy task. But we can observethefollowing pattern :

25(1) = 2 =12
25(2) = 6 = 23
25(3) =12 = 3.4

25(4) =20 = 45, andsoon.
Thisleads usto conjecturethat
n(n+1)
2

25(n) = n(n+1) sothat S(n) =
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e, 1+2+3+ - +n :w.
Now et us use mathematical induction to prove the aboveformula.
. L . n(n+1
Let P(n) bethestatement : Thesum S(n) of thefirst n positiveintegersisequal to 5
11+1
1. Basisof induction : SinceS(1) = 1= (2 , theformulaistruefor n =1.

2. Inductivehypothesis: Assumethestatement P(n) istruefor n=k.

i€, S(k)=1+2+3+- +K :@.

3. Inductivestep : Toshow that theformulaistruefor n =k +1.

(k +1) (k +2)

2
Weobservethat S(k +1) =1+2 +3 +- +k +(k +1)

=S(k) +(k+J

i.e, toshowthat S(k +1) =

Since S(k) = @ , by the inductive hypothesis,

wehave S (k +1) +(k +2
_ (k+1 (k +2
2

Thereforetheformulaholdsforn= (k +1).
00 By theprincipleof mathematical induction, P(n) istrueforall nON .

_n(n+1)

_ k(k+1)
2

i.e, theformula, 1+ 2 +3 +-- +n istrueforall nON.

2.2 Applicationsof Mathematical Induction

Mathematical inductionisvery useful in proving many theoremsand statements. For example, itis
useful in proving Binomial theorem, Leibnitz theoremfor finding n" order derivativeof the product of two
functionsand evaluation of someintegralsetc.

We now illustratethe utility of mathematical induction in proving some statements.

2.2.1 Solved Problems
1. Problem: Use mathematical induction to prove the statement,

_n°(n+1°

B+2+3F +..+n° . OnO N.
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Solution: Let P(n) bethe statement :
_n*(n+1°
4

B+2+3F +..+n°

11+172

Sincel= theformulaistruefor n=1.

Assumethat statement P(n) istrueforn=k, k>1
k? (k +1)°
— 4
We show that the formulaistruefor n= k+ 1,

e, BP+2+3F +..+k3 =

k +1)? (k +2)?
i.e., we show that S(k + 1) _k+D 4( ) (WhereS(K) = 13+ 23 + . + 1)
Weobservethat Sk +1) = 12 +2° +3° + ... +k® +(k +1)°
= S(k) +(k +1)°.
k? (k +1)°
Since, S(k) = K (k+ 1)1 ,
4
wehave S(k +1) = S(k) +(k +1)°
2 2
KR+ D Lk sy
4
_ (k+D? 5o
=" E( +4 (k +1)E
_ (k+D? (k +2)?
4
0 Theformulaholdsforn=k+ 1.
0 By theprincipleof mathematical induction, P(n) istrueforal nON.
2 2
i.e, theformulal® + 22 + 3 +... +n® O+ strueforall nON .
2. Problem: Use mathematical induction to prove the statement,
Z(Zk =@ EDEED o noN.
e 3

Solution: Let P(n) bethestatement :

P+3F +5° +..+(2n -1° =

3
Let S(n) bethe sum 12+ 32 + - + (2n - 1)%,

n(2n-1) (2n +1)
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Since (1) =1 1 (2= 1?3 (2+1 , theformulaistruefor n=1.

Assumethat the statement P(n) istrueforn=k, k>1.
k (2k -1 (2k +1)

ie,S(k) =12 +3 +5 +.. +(2k -1? = 2

We show that theformulaistruefor n=k+ 1,
(k +1) (2k+1) (2k +3)
3 .
Weobservethat S(k +1) =1% +3% +5% +. +(2k -1)? +(2k +1)?
=S (k) + (2k +1)?
k (2k - 1) (2k +1)
3 :
wehave S(k +1) = S(k) +(2k +1)°
_k(2k-1) (2k +1)
- 3
- (2k +1) W +(2k +1)E
= (2K +1) E12k2+5k+3g
o 3 0
_(2k+1) (k +D (2k +3)
- 3
(k +1) (2k +1) (2k +3)
3 .
U Theformulaholdsforn= k+ 1.

i.e., weshowthat S(k +1) =

Since S(K) =

+ (2k +12)?

0 Sk +1) =

O By theprincipleof mathematical induction, P(n) istruefor all nCIN .
n - -
i.e., theformula z (2k —1)% = n(2n 1; (2n +1) istrueforal nON .
K=1

3. Problem: Use mathematical induction to prove the statement,

2+32+4.2% +.. upto nterms = n, 2", Orid N.

Solution: Let P(n) bethe statement :
2+32+4.22 + +(n +1) 2"t =n.2"
Let S(n) bethesum 2+ 3.2+ 4.2° + ... + (n+ 1) 2",
Since S(1) = 2 =1. 2!, theformulaistruefor n=1.
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Assumethat the statement P(n) istruefor n=k, k> 1.

ie, S(k)=2+32+4.2% +.. +(k +1) 2¢1 =k.2

We show that theformulaistruefor n=k+1

i.e, weshowthat S(k+1) = (k +1) .2

Weobservethat S(k +1) = 2 +3.2 +4.22 +..+(k +1) 271 +(k +2) 2
S(k) + (k +2) 2¢.

Since, S(k) =k 2, wehave, S(k +1) = S(k) + (k +2) 2¢

k.2% + (k +2) 2

2 (k +k +2)

(k +2) 2¢*1,

0 Theformulaholdsfor n = k + 1.
[ By the principle of mathematical induction, P(n) istruefor all n N .

i.e,theformula2 + 3.2 + 4.22 +... + (n +1) 2"~* =n 2" istrueforal nON.

1 1 n
+ + - uptonterms = .
3n+1

Solution: 1,4,7,...arein Arithmetic Progronwhosenth termis 3n- 2.

1
. D + D San
4. Problem: Showthat,J nO N, 14 4.7 710

4,7,10, ... areasoin Arithmetic Progression whose n"termis 3n+ 1.

1
(B3n-2)(3n+1)°

0 Then™termin the given seriesis

Let P(n) bethe statement :
1 1 1 1 n
e =
1.4 47 710 (B3n-2) (3n +1) (3n +1)
and let S(n) bethe sum on theleft hand side.
1 1

Since S(l) = — = , theformulaistrue for n=1.
1.4 31+1
Assumethat the statement P(n) istruefor n=k, k> 1.
e, Sk = —+- L4 L 4 1 K

- e+ = .
1.4 47 7.10 Bk -2) 3k +1) 3k+1
We show that theformulaistrueforn=k+1,

K+1
3k+ 4

i.e, weshowthat S(k +1) =
We observe that
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S(k+1) :i+i +i +.0 + 1 + 1
1.4 4.7 710 (Bk = 2) Bk +1) (3k +1) (3k +4)
= S(k) + L .
Bk +1 (3k +4)
k 1

S(k)

Since S() = g5 Wehave Stk T@Bk+D) 3k +4)
1

Bk +1 * Bk +1) (3k +4)

k (3k +4) +1
(3k+1) (3k + 4)

(k +1) (3k +1)
(3k +1) (3k + 4)

k+1
3k +4

0 Theformulaholdsforn=k+ 1.
0 By theprincipleof mathematical induction, P(n) istrueforall n ON .

5. Problem: Use mathematical induction to prove that 2n — 3 < 2"2 forall n> 5, n ON.
Solution: Let P(n) bethestatement: 2n-3< 2"2 O 5 1 N.
Herewe notethat the basis of inductionis5.
Since 2.5-3<2°?, thestatement istruefor n =5.
Assumethe statement istruefor n=k, k>5.
i.e, 2k -3< 272 fork>5.
We show that the statement istruefor n=k+1,k>5
ie, [2(k+1) -3 <2k*D 2 for k>5,
Weobservethat [2(k+1)-3] = (2k—-3) +2
2242, (Byinductive hypothesis)
< 224+ 2%2%fork>5

2.2k2
= ok+1)-2

IN

0 Thestatement P(n) istrueforn=k+ 1, k>5.
[0 By theprincipleof mathematical induction, the statement istrueforall n>5,n O N.
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6. Problem: Use mathematical induction to provethat (1+ x)"> 1+ nxfor n>2, x> -1, x # 0.
Solution: Let the statement P(n) be: (1+x)">1+nx.
Herewe note that the basis of inductionis2 and that x # 0, x>-1
O 1+x>0.
Since (1 + x)2 =1+2x+Xx°> 1+ 2x, the statement istruefor n= 2.

Assumethat the statementistruefor n=k, k> 2.
ie, (1+x>1+kxfor k>2

We show that the statement istrueforn=k + 1,
e, (L+X1>1+ K+ 1x
Weobservethat (1+x)5*1 = (1+x)*. (1+x)
> (1+kx).(1+x), (Byinductivehypothesis)
= 1+ (k+ 1)x + ke
> 1+ (k+ 1)x, (since kx? > 0)
0 Thestatementistrueforn=k+1.
[0 By theprinciple of mathematical induction, the statement P(n) istruefor all n> 2.
ie, (L+x">1+nx, On>2, x>-1, x# 0.

2.3 Problemson divisibility
Inthefollowing problems, weillustrate the method of using mathematical induction to provethe
satementsondivisibility.

2.3.1 Solved Problems

1. Problem: If x and y are natural numbersand x # y, using mathematical induction, show that
x" — y" isdivisibleby x -y, forall nON.

Solution: Let P(n) bethe statement :
x" — y" isdivisibleby x -y.
Since x' - y* = x — y isdivisibleby x -y, thestatementistruefor n=1.
Assumethat the statement P(n) istruefor n=k, k> 1.
i.e, x¢ — yk isdivisibleby x - y.
Then x* — y* =(x - y) p, where p isthequotient when x* — y* isdivided

by x-v. . (1)
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We show that the statement istruefor n=k+ 1,
i.e., weshowthat x*** — y**! isdivisibleby x - y.

From (1), wehave  x* —y* = (x —y)p
O x“=(x-y)p+y“

O x<*1= (x—y) px + y*. x

0 Xk+1_yk+1: (x—y) pX+ka _yk+1

= (X -y) px+Y* (x —y).
= (x -y) (px +y")
0 X"~ y**!isdivisibleby x - v.

0 Thestatement P(n) istruefor n=k+ 1.
00 By theprincipleof mathematical induction, P(n) istrueforal n 0O N

i.e, X" —y"isdivisibleby x—y foral n O N.

2. Problem: Using mathematical induction, show that X" + y™ is divisibleby x+ y, if m isan
odd natural number and X, y are natural numbers.

Solution: Since m is an odd natural number, there exists a non negative integer n such that
m=2n+ 1.

Let P(n) bethestatement : x*"*! + y2"*1 isdivisibleby x+y.

Since x'+y' =x+y isdivisible by x + y, the statement is true for n = 0 and
X214 21 =3 1B = (x +y) (P —xy +y?) isdivisibleby x+y, the statement istrue for
n=1.

Assumethat the statement P(n) istruefor n=k, k> 1.

ie, x2¢*1 4+ y?k+lisdivisibleby x+y.

2k +1 2k +1

Then x

X2k+l + y2k +1

+y =(x+Yy)p, where p istheexpressioninx, y and isthe quotient when
isdividedby x+y. .. (1)
We show that the statement istruefor n=k+ 1,

2k +3 + 2k +3

i.e., weshow that x y isdivisibleby x+y.

From (1), wehave x2<*1 + y2K*1 = (x + y) p



0 XZk +]: (X" y) p_ y2k +1
B X2k +1. X?= (X" y) p X2_ y2k +1.X2
0 X2k+3: (X" y) p X2_ y2k +1.X2

DX2k+3:|‘ y2k+3: (Xl' y) pXZ_ y2k+1.X2+ y2k+3

2k+1(

=(x+y) px* -y x> = y%)

=(x+y) pxX* -y T (x +y) (x )

= (x+y) Ppx -y (x -y
O x2k*3+  y%*3isdivisibleby x+y.
O The statement P(n) istruefor n= k + 1.
O By theprinciple of mathematical induction, P(n) istruefor al n.

ie, x?"*1 + y?"*lisdivisbleby x +y,foral non-negativeintegersn.

i.e, x™ + ymisdivisibleby x+ vy, if misanodd natural number.

Note: Theabove problem need not hold when misan even natural number.
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For example, if m=2, x=1, y=2 then x*+y? = 12+ 2% =5 isnot divisible

by x+y = 1+2=3.

3. Problem: Show that 49" + 16n — 1 isdivisible by 64 for all positive integers n.

Solution: Let P(n) bethe statement :
49" +16n -1 isdivisible by 64.

Since 49' + 16.1 -1 = 64 isdivisibleby 64, the statement istruefor n=1.

Assumethat the statement P(n) istruefor n=k, k> 1.
i.e, 49% + 16k - 1 isdivisibleby 64.
Then 49* + 16k -1 =64t, forsome t N .
We show that the statement P(n) istruefor n=k+ 1,
i.e., weshowthat 49 *1 + 16 (k +1) —1 isdivisibleby 64.
From (1), we have 49X + 16 k -1 = 64t

(D)
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0 49 64t 16k 1
O 49%.4% (64t 16k 1).49
0 49*% 16 (k- 1 E (64t 16k+ 1).49+ 16 (k+ 1)- 1

0 49*% 16 (kv 1 E 64 (49t 12k+ 1),
here 49t -12 k +1 isaninteger.
0 494 16 (k 1 1isdivisibleby 64.
O Thestatementistruefor n=k+ 1.
O By theprincipleof mathematical induction, P(n) istrueforal nON ,
i.e, 49" + 16 n—1isdivisibleby 64, O ri] N.

4. Problem : Use mathematical induction to prove that 2.42"*% 4+ 3G"+1 jsdivisible by 11,
Oml N.
Solution : Let P(n) bethe statement :

2.4 4 367*Y g ivisible by 11.

Since 2.4 4 3G1+) — 5 43 4 3* =209 =11 x19 is divisible by 11, the statement
P(n) istrueforn=1.

Assumethat the statement P(n) istruefor n=k, k> 1.
ie, 2.4@%0 4 364 jsqivisibleby 11.
Then 2.4@%*9 4+ 3%+ = 17 ¢ for someinteger t. .. (1)
We show that the statement P(n) istruefor n= k + 1.
i.e, weshowthat 2.4%%*3 + 33*4 jsdivisibleby 11.
From (1), wehave 2.4(3<*3 4 30k+1) = 194
0 2.4@% 0= 17 36+
02. 43D 42 (11t— 3(3“1)).42
o 4(2k+3) | 5(3k+4) (11,[ _ g +1))16 + 30Kk +4)
11t .16 - 3% 16 +3%+4)
11..16 + 3% 3 167

11.t.16 + 339 (17)

11, @rm + 33 1)5,
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here 16t + 3%¢*Y isaninteger.
0 2.4%¢3% 309 isdivisibleby 11.
O The statement P(n) istruefor n=k + 1.
O By theprinciple of mathematical induction, P(n) istrueforall nO N .
ie, 2400 4+ 30" isdivisibleby 11foral nON .

Note: While proving the statements using the principle of mathematical induction, thetwo steps: Basisof
induction and Inductive hypothesisareimportant. Carelessuse of the principleof mathematical induction
canlead to obvioudly absurd conclusions. Thereare statementsthat aretruefor many natural numbersbut
arenot truefor al of them as can be seen from thefollowing examples.

2.3.2 Examples

(i) Theformula P(n): n? - n + 41 givesa prime number for n= 1,2, 3, ..,40. But P(41) = 41%is
obivoudly divisible by 41. Therefore, it isnot a prime number.
(i) For nON, let P(n) be the statement
"1+3+5+- +(2n -1) =n® +(n -1 (n -2) - (n -10)"
Then P(1), P(2), ..., P(10) areall true.

But P(11) isnot true.
Exercise 2(a)

Using mathematical induction, prove each of thefollowing statements, forall nO N .

nn+1)((2n+1
= S _

1 P+2% 4+ 4 4n?

n(n® + 6n +11)

2.2.3+3.4+4.5+ - upto n terms = 3

1 1 1 n
3 e = _
1.3 3.5 5.7 2n-1) (2n+1) 2n+1
4. 4 +8 +12° +... upto n terms=16n? (n + 1)?.

5. a+(a+d)+(a+2d) +- upto n terms :g[2a+(n -1)d] -
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6.

10.
1.
12.
13.

14.

15.

®
0‘0

< Stepsto prove astatement using the principle of mathematical induction:

a(r"-1
(r-1

~n®Gn-1

==

a+ar +ar? +.. upto n terms =

2+7+12 +..- +(5n =3)

30, %0 0 0O
§L+ﬁl+ﬁa 1+E E
(2n+7) < (n+3)>

n3
12+22+...+n2>§.

2

1+2l§' =(n +1)~.
n

4" - 3n —1isdivisbleby9.
3.52"+1 4 3n+1lisdivisibleby 17.
1.23+234+345+..

,r#1.

nn+1) (n+2)(n+3)

upto n terms =

13+13+23+13+23+33

1 1+3 1+3+5

12+ (12 +22) + (12 +22 +3?) +... upto n terms =

Principleof finitemathemeatica induction:
Let S beasubset of N such that

() 10s
(i) Forany kON, kS O k+10S,
Then S= N.

Principle of complete mathematical induction:
Let Sbeasubset of N such that

(i) 10S

(i) Forany k O N,{L 2,3 ... k} O
Then S = N.

ki#l S.

() Basisof induction
(i) Inductivehypothesis
(i) Inductivestep

. Show that P(1) istrue.

inductive hypothess.

4

_n 2
+... Upto n terms = 4 Fn® +9n +13.

n(n+12(n+2)

: For k > 1, assumethat P(k) istrue.
. Show that P(k + 1) istrue on the basis of the

12
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Historical Note

Unlike other concepts and methods, proof by mathematical induction isnot theinvention of a
particular individual at aparticular moment. Itissaid that the principle of mathematical induction
was known to the Phythagoreans.

The French mathematician Blaise Pascal (1623 - 1662) is credited with the origin of the
principleof mathematical induction.

Thename*induction’ was used by the English mathematician John \\allis (1616-1703).

L ater the principle was employed to provide aproof of the binomial theorem.

De Morgan (1806 - 1871) had many accomplishmentsin the field of mathematics on many
different subjects. Hewasthefirst person to define ‘ mathematical induction’ and developed De
Morgan'srulein set theory and wrote atreatise on formal logic.

Giuseppe Peano (1858 - 1932) undertook the task of deducing the properties of natural
numbersfrom aset of explicitly stated assumptions, now known as Peano’saxioms. Theprinciple
of mathematical inductionisarestatement of one of Peano’saxioms.




Chapter 3

Wokri

"The search for truth is more precious than
its possession”
- Albert Einstein

I ntroduction

We have learnt about Matrices and their
determinantsin high school classes. An arrangement
of numbersinarectangular array comprising of rows
and columnsisknown asamatrix. m X n (read as
mby n), where m isthe number of rows and nis
the number of columns, isknown asthe order of the
matrix. In high school classesour study waslimited to
2 X 2matrices.

In this chapter we deal with higher order
matricesingeneral and 3 X 3matricesin particular.
For the sake of completeness, we shall start with
definingamatrix etc... and go on to extend our study
of the algebra of matricesand then usethetheory to
find the solutions of ssmultaneouslinear equations.

Arthur Cayley

(1821 - 1895)
Arthur Cayley was a British
mathematician. Cayley worked as a
lawyer for 14 years. While he was a
lawyer he published about 250
research papers in mathematics, and
later, while working as Sadleirian
Professor at Cambridge, published
another 650. It was Cayley who first
introduced matrix multiplication. He
was consequently able to prove the
Cayley-Hamilton theorem - that every
square matrix is a root of its own
characteristic polynomial.
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3.1 Typesof matrices

In thissection, we defineamatrix, itsorder and varioustypes of matrices.

3.1.1 Definition (Matrix)

An ordered rectangular array of elementsis called a matrix.

We confine our discussion to matrices whose elements are real or complex numbers; or real or
complex valued functions. Matricesare generally enclosed by brackets.

We denote matricesby capital lettersA,B, C...
Thefollowing are some examples of matrices.

= NS = R 4
3 0 -o Ha -3
Bx+1 -1 3 B S 1% row
C= -3 2 snx 0 - 2Mrow
E7+sin X 4 3+sin 2)% ~ 3%row

! ! !
1% column 2™ column 3 column

Inthe above examples, the horizontal lines of elementsare said to constitute the r ows of the matrix
and thevertical linesof elementsare said to constitute the columns of thematrix. Thus A has2 rowsand
3 columns, B has2 rowsand 2 columns, while C has 3 rowsand 3 columns.

3.1.2 Definition (Order of Matrix)

A matrix having mrows and n columnsis said to be of order m x n, read asmcrossn or
m by n.

In the above examples, A isof order 2x3, B isof order 2x2 and Cisof order 3x3.

In general, amatrix having mrowsand n columnsisrepresented asfollows.

(Bgy @ ... Qgj ... alng
%21 a22 ) a2J e a2n |:|
.. ..
D-oo D
O O
A=1[}.. 0
e A2 ey %n 5
|:|- . . . . |:|
a. .40
Bt .
am2 Ay 8m[]



In the above matrix every element is specified by its position in terms of the row and columnin
whichtheelement ispresent. Thefirst and second suffices of an element indicate respectively therow and

columninwhichtheelementispresent. For example ayg isthe element present in the second row and the
third column.

In compact form the above matrix is denoted by
A =[8j]mxn Where 1si<mand 1< j<n.

Throughout this chapter, we generally consider matrices of order m X n, where
m O0{1 2,3} and iJ {1, 2, 3, 4}.

3.1.3 Typesof matrices

1. Squarematrix

A matrix in which the number of rows is equal to the number of columns, is called a square
matrix.

A = [8jj]xn isasquarematrix if m=n. Inthiscase wesay that A isasquare matrix of order
m. For example,
[2] isasguare matrix of order 1.

o -10. .
H’ 45 iSasquare matrix of order 2,

2 0 1O
and Hﬁ -1 ZB isasguare matrix of order 3.
H 6 %

If A =[a;] isasquarematrix of order n, theelements &1, &, ..., &), aresaidto congtituteits
Principal diagonal or simply the diagonal. Hence &; isan element of the diagonal or non-diagonal
accordingas i=j ori#j.

Thesum of theelementsof thediagonal of asquare matrix A iscaledthetraceof A andis
denoted by Tr (A).

n
If A =[a;] isasquarematrix of order n, then Tr (A) = Za“.
&

2 0 1O
For example, if A = Bﬁl -1 2% then Tr (A) =2+ (-1) + 9=10.
H 6 &%

2. Diagonal matrix

If each non-diagonal element of a square matrix is equal to zero, then the matrix iscalled a
diagonal matrix.
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0 o0 @2 0 0J
For example, B3 ZH, B) -1 OS arediagonal matrices.
B 0 1

If A =[&;]nxnisadiagonal matrix, itissometimesdenoted as diag [ a1, 85, -, 8]
3. Scalar matrix

If each non-diagonal element of a square matrix iszero and all diagonal elements are equal to
each other, then it is called a scalar matrix.

For example, % gﬁ

0 oo 1 0 I
HJ OH, B 0 -1 Og areall scalar matrices.
50 0 -1

4. Unit (Identity) matrix

If each non-diagonal element of a square matrix is equal to zero and each diagonal element is
equal to 1, then that matrix is called a Unit matrix or |dentity matrix.

We denotetheunit matrix of order n by |, or smply by I, whenthereisno ambiguity about the

order.
. 0 0O
_ o 0O _ . .
Forexample, I,=[1], I, = B) 1H’ I3 = S) 1 Ogareunltmatnces.
B 0 X

[8;Inxn isaunit matrix
= g=1if i=jand a;=01if i#]

5. Null matrix or Zero matrix

If each element of a matrix is zero, then it is called a Null matrix or Zero matrix. It is
denoted by Oy OF simply by O.

0 0 M 0o
For example, O, = B) OE’ Og = %) OS arenull matrices.
B &

6. Row matrix and Column matrix

A matrix with only onerow is called a Row matrix (or row vector) and a matrix with only one
column is called a Column matrix (or column vector).



Forexample, [1 3 -2] isarow matrix (order 1 X 3),

0 _
Hlﬁ isacolumn matrix (order 2 X 1).

7. Triangular matrices
A square matrix A =[g;] issaidtobe Upper Triangular if & =0 forall i >].
A issaidto be Lower Triangular if a;=0 forall i <j.

2
For example, S) ZE HO 4H are upper triangular matriceswhile

0

N
O - O

%, g c;@arelowertriangularmatrices.
H

Observe that 1,and O, areboth upper and lower triangular matrices.

A= [aij]nxn NES
Upper Triangular if &; =0 forall i >j.
Lower Triangularif &; =0 forall i <]

3.1.4 Definition (Equality of matrices)

Matrices A and B are said to be equal if A and B are of the same order and the
corresponding elements of A and B are the same.

(&1 ap a13gand B:Dbn by, bl:%
o1 Gy 8y b by by

areequal if & =D fori=12and j=12 3.

Thus A =

3.1.5 Definition (Sum of two matrices)

Let A and B be matrices of the same order. Then the sum of A and B, denoted by A + B, is
defined as the matrix of the same order in which each element is the sum of the corresponding
elementsof A and B.

I A= [aij]mxn and B = [hj]mxn’
then A+B= [Cij]mxn where Cij =g + hj
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For example, if A:ﬁ _z _Eand B:E; _2 _ﬁ then
napo YL 2¢() AT M 0 @
“HB+3 3+2 1+(aH H 2 o

3.1.6 Properties of Addition of matrices

Let A =[g;], B=[bj], C=[g;] bematricesof thesame order. Then theaddition of matrices
satisfiesthefollowing properties:

(i) Commutative Property

A+B =B+A
Now A+B = [&;]+[h]
[a; +hy]
= [ + gl
T1+Ta. Addition of matrices is commutative.
L1+ 12] i.,e, A+B=B+A

B+A

(i)  Associative Property
A+(B+C) = (A+B)+C
Now (A+B)+C = ([a]+[b;])+I[g;]
[a; + b1 +[G;]
[ (& +h;) +¢]
[a; + (b +¢;)]  (why?)
[a;]+[h; + ¢l Addition of matrices obeys
Associative Property
CAR(EARCN) ie,A+(B+C)=(A+B)+C
= A+(B+C)
(iif) Additive identity
If AlisamXn matrix and Oisthe(m X n) null matrix,
A+0 =0+A = A. Wecdl Otheadditiveindentity intheset of all m X nmatrices.

(iv) Additive inverse
If Aisan (m X n) matrix thenthereisauniquem X nmatrix B such that
A+B = B+A = O, Obeingthem X n null matrix.



This B is denoted by —A and is called the additive inverse of A. Infactif A =[a;], then

B=[-g].

3.2 Scalar multipleof amatrix and multiplication of matrices

Thissectionisdevoted to the study of multiplication of amatrix (i) by ascalar and (ii) by amatrix.

We also study the properties of multiplication.

3.2.1 Definition (Scalar multiple of a matrix)

Is denoted by k A.

Let Abeamatrixof order m x n and k beascalar (i.e., real or complex number). Then the
m x N matrix obtained by multiplying each element of A by kis called a scalar multiple of A and

l If A= [aij]mxn then KA :[kaij]mxn

2 —
For exampleif k=2 and A= 3 1Dthen
ORI &

. [Bx3  2x2 2x(-DOo 06 4 I
A=A 2x(9 2a HHe 6 2

3.2.2 Note

(-1) A= —A becauseA +(-1)A=0.

3.2.3 Properties of scalar multiplication of a matrix

Let A and B bematricesof thesameorder and a, B bescalars. Then

(1) aBA)=(aB)A=B(aA) (i) (a+P)A=aA+ BA
(i) a(A+B)=aA+aB (iv) a0O=0
(v) OA=0

Consider (i) Let A =[a&]nxn
(atP)A = (a+p) [a;]
=[(a+B) 3] ..... by definition3.2.1
= [aay; +PBa;] ..... by distributive law of numbers
[oay; ]+[ Ba; ]
afa;]+ pla;]
= oA+ BA

Verification of properties (i), (iii), (iv) and (v) isleft to the student asan exercise.
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3.2.4 Solved Problems

1. Problem: If A—EJ? 3 _fﬁ and B=g _Z _E then find A+ B.

Solution: A + Bisdefined since A and B are of sasmeorder.
2 3 -1 Dl 0

AEEE s TR —E
R+1 3+0 -1+

"H+2 8-2 5-H
33 00
B4

Ox-1 2 y-50 0O1-xXx 2 \J

2. Problem: |If E z 0 2% E 2 0 %thenfindthevalu&e

H 1 -1 1+ag g 1 -1 H
of x,y,zand a.
Solution : Fromtheequality of matrices
X-1=1-x,y-5=-y;z=2,1+a =1.
Hencex =1; y:g; z=2, a=0,

(IR
N

I

N |
[

P

3.Problem: Findthetraceof A if A

I~ o
|
=

Body

Im|
N
Il

Solution : The elementsof the Principal diagnonal of A arel, —1, 1. Hencethetrace
of A isl+(-1)+1=1.

4 -
4. Problem: If A= a_z ?éthenfind —-5A.

Solution: By thedefinition of scalar multiplication of matrix
04 -50 0O (H4 (B9 020

AT, H T Hes (98 H 1w —1@



5. Problem: Find the additive inverse of A where

Oi 0 10

_u -
A—DO =i 2%

1 1 3

Solution : Theadditiveinverseof A is —A =(-1)A.
Hence the additiveinverse of the given matrix

Oi 0 oo 0 -O
“A=(-)g0 - 29=g0 i -2
F1 1 5 B1 -1 5

6. Problem: If A:D? 3 b and Bz[IL 2 _ then find the matrix X such that
+ -1 5 b -1 3

A +B — X =0. What isthe order of the matrix X ?

Solution: A and B arematricesof thesameorder 2 X 3. If A +B — X istobedefined, the order of
X also must be 2 X 3.
A+B-X=0 « X =A+B
@2 3 1o Ol 2 -1

R s Booa B

=B 5 Q].
t -2 &
o 1 20 01 -2 o
. _ 0 _ 0 0 : _
7.Problem : |fA_% 3 43and B= g0 1 -I5 thenfind A-B
B 5 6 HE1 0 H
and 4B - 3A.
0 0-1 1-(2  2-00 Erl S 4
Solution: A=B =g 2-0  3-1 4—-(4)g =2 2 5
- (-1) 5-0 6-30 HS 5 H
01 =2 00 120
_ .0 0 0
4B-3A =470 1 -15-3 % 3 47
Bl H B 5 &
04 -8 0 00 3 &
_ 0 0.0
=50 4 -43-g6 9 1
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8. Problem : If Az@ iﬁ Bzﬁi %and 2X + A =B thenfind X.

Solution: 2X+A=B 0O 2X = B

A
:IZB 81 01
7 2 s 4
_ 2 60
-2
12 e _Mm E_
HenceX—E Bl —ZH _HZ —E
9. Problem : Two factories| and Il produce three varieties of pens namely, Gel, Ball and Ink pens.

The sale in rupees of these varieties of pens by both the factories in the month of September and
October in a year are given by the following matrices A and B.

September sales (in Rupees)
Gel Ball Ink
1000 2000 30007 Factoryl

“H000 3000 10001 Factory i
October sales (in Rupees)

Gel Ball Ink
_[J500 1000 6000 Factoryl
“[2000 1000 1000HFactory i

(i) Find the combined sales in September and October for each factory in each variety.

(i) Find the decrease in sales from September to October.

Solution : (1) Combined salesin September and October for each factory in each variety isgiven by
Gel Bal Ink
1500 3000 36001 Factory|
A+B =
7000 4000 2000H Factory I



(i) Decreasein salesfrom September to October isgiven by

Gel Bal Ink
(0500 1000 24007 Factoryl

A-B=
000 2000 0 HFactoryli

10. Problem : Construct a 3 x 2 matrix whose elements are defined by a; = %Ii—fﬂj l.

Solution : Ingenera a 3 x 2matrix isgivenby

(&1 alzg
A= appg
Bg1  agH
1. .0 . :
Now Gﬁj=§|"3l| i=1,23and j=1,2
1 _ _ 1, _5
a, = SI1-@DI=1 a, = 511=6x91=7
1 1 _1,. _
&y = 512-@<D)1=7 &, = 512-@x9|=2
_ 1 - - 1 _3
8 = 513-(DI=0 ay, = 518-(xa1=5
4 o
] A
.
g 28
Exercise 3(a)
1. Writethefollowing asasinglematrix.
000 0O-1I
- . 0,0,0
() [213+[0o0( (i) oig+g B
1H BA

o

B 9 04 O
1

) 5 g —%H? jé (iv)

D:DI:II:IQ arE)
[IEN
|
)i Y
D:I:II:I+I:|I:|
AR
s

w e
[

i
[
N
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1 2
2. 1If A—Ij 3 = L = Dand A + B =X then find the values of
Jaf °"Hs 87 %3
X, Xo, Xz and X4.
1l 2 m -2 5% 02 1
_ 0 U _ 0 _ 11
3 IfA=gl 2 4, B=g0 -2 2 ad CH 1 1 2
H2 -1 & =il 2 = H2 0 @&

thenfind A+B+C.

-10 0-3 -1 @

4 1f A= E‘z oD B—B 2 1 %andX:A+BthenfindX.

31@ H4 -1 ZH

5, SI;Z’ 2y - zé E_Z’ . ‘Ethenfindthevalu&sof Xy, zanda

x-1 2 5-y0 01 2 3
.1 1f 90 z-1 7 3=g0 4 7, thenfindthevaluesof x,y,zanda.
51 0 a-5 B1 0 @
01 3 -5
. B _
2. Findthetrace of Dz 1 Eg
H2 0 15
0o 1 20 0-1 2 3
3 0f A :Sz 3 4BandB :S 0 1 tgfindB—Aand4A—5B.
H4 5 -6 50 0 -f
2 3[] 03 2 1

4. 1f A _B3 Hand B =Hl 5 E find 3B — 2A.

3.25 Multiplication of matrices

We say that matrices A and B are conformable for multiplication in that order (giving
the product AB) if the number of columns of A isequal to the number of rows of B.



3.2.6 Definition (Product of two matrices)

Let A =[ay]mxn and B=[by]nxp, betwo matrices. Then the matrix C=[cjlmxp

n
where Gj = Z 3 by iscalled the product of A and B and is denoted by AB.
k=1

Observethat whenthe ordersof A andB arem X nandn X p, the order of the product matrix
ABism X p. Every element of AB isintheform of asum of productsof certain elementsof A and of B.

For example, in C=AB =[]«

=the sum of the products of the elements of second row of A with the
corresponding elements of the 3rd column of B

A useful method to understand and to remember matrix multiplicationisillustrated in thefollowing
example.

p2 3 1@ 0
Let A2x3—BO 1 5Hand B3x4— D_l 0 3 %

Lettherowsof A beR,, R, andthecolumnsof B beC,,C,, C,,C,. When A, ismultiplied

with Bixa the order of the product matrix C= AB is 2Xx4.
O
Olet C= [€1 Co GCs3 Cl4D-
1 G Gz Cyf]
Then C = [(RiC RiCy RiCs RGO

|:|.
B?zcl R,C, RyC3 RyCy

¢, = R,C, = sumof the products of the 1st row elementsof A withthe
corresponding elementsof the 1st column of B.
=2(1) +3(~1) +1(0) = —1.

¢, = R,C, =sumof the products of the 1st row elementsof A withthe
corresponding elements of the 2nd column of B
= 2(3) + 3(0) + 1(4) = 10.
3.2.7 Examples

1. Example

Consider thematrices A = E 3;ﬁand B :ﬁ_(i %

Clearly A, B aswell asB, A are conformable.
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_ @2 3000 4 _ 20)+3(-) 2(4) +3(2)0 a +3 1477
Pt AB= 0 i o THO+2) w9 +2e] He &

Now Ba= B0 4002 31 _00@2+41) 0Q+40 _ @ 81
H1 2 2 THae 20 @228 T B i

Hencetheproducts AB and BA arenot necessarily equal.
2. Example

A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen
economicsbooks. Their selling prices are Rs. 80, Rs. 60 and Rs. 40 each respectively. Using
matrix algebra, find thetotal value of the booksin the shop.

Solution: Number of books
Chemistry Physics Economics
_ [0x12 8x12 10 x1207
“He120 =96 =120{
Selling price (in rupees)
(800 Chemistry

B = 1601 Physics

F105 Economics
Total value of the booksin the shop.

AB  =[120 96 120] 80O
%
ElLE

= [120 x 80+ 96 x 60+ 120 x 4Q]
= [9600 + 5760 + 4800]
= [20160] (in rupees).

3.2.8 Note

Matrix multiplicationisnot commutetive. If A and B are matrices conformable for multiplication,
AB exists, but BA may not exist; evenif BA exists, AB and BA may not havethe same order and even if
they have the same order they may not be equal .

1. Iftheordersof A andB are2 X 3and 3 X 4 respectively thenthe order of ABis2 X 4, but BA
doesnot exist. (Thenumber of columnsof B isnot equal to the number of rowsof A, thatisB and
A arenot conformablefor multiplication).



=

2. IftheordersA andB are2 X 3and 3 X 2 respectively, thentheorder of ABis2 X 2, whilethe
order of BA is3 X 3. Hence AB and BA can not beequal.

3. Forthematrices A and B of example 1, 3.2.7, AB and BA havethe sameorder but AB# BA.
Thisdoesnot mean however, that AB# BA for every pair of matricesA, B for which AB and BA
aredefined and are of same order.
. 3 30
For instance, A = i1 Oljand B:EI o then AB =BA :D 0 .
D 2] do o o B
Verify whether every pair of diagonal matrices of same order commute or not!
Also, verify by an example whether apair of square matrices of same order, whose product isa
scalar matrix, commute or not!
3.29 Note
- 3
Let A:m 1l]andB:D > then AB=BA = O.
D 2 o o

We know that in caseof real numbers a,b if ab=0thena=0 or b=0. Butin matrices, the
product of two non-zero matrices could be azero matrix, as seen from the above example.

3.2.10 Note
If AB=ACandA # O, thenitisnot necessary that B = C.

For example, if Az@ %,Bzﬁg %and Czﬁg

wehave AB=0 = AC, but B # C.
3.2.11 Properties of multiplication of matrices

Multiplication of matrices possessesthefoll owing properties, which we state without proof.
1. TheAssociativeLaw

For any three matrices A, B and C, we have (AB)C = A (BC) inthe sense that whenever
oneside of the equality isdefined, then the otherside is also defined and the equality holds.

2. TheDistributiveLaw
For any three matrices A, B and C, we have
(i) A(B+C)=AB+AC (Left Distributive Law)
(i) (A+B)C=AC+BC (Right Distributive Law)
inthe sensethat whenever one side of the equation isdefined, then the othersideisalso defined
and theequality holds.
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3. Existenceof multiplicativeidentity
If | istheidentity matrix of order n, thenfor every square matrix A of order n
IA=AlI=A.
3.2.12 Note
(i) Forany squarematrix A, wedenoteA - A by AZ In general, for any positiveinteger n, n>1,

theproduct A. A. A ... A (taken ntimes) isdenoted by A".

(i) If Aand B arematricesof orders m X n and n X p respectively and a, B8 arescalars, then
(aA). (BB) = ap(AB) = ((@p)A)B = A.((ap)B).
(i) If aisascalar, A isasquarematrix and n isapositiveinteger, then
(@aA)"=a"A" and aA =(al)A.
We now verify al the properties of multiplication, in thefollowing solved problems.

3.2.13 Solved Problems

1. Problem
01 2 01 -2
If A= 2 3Jand B=g-1 0] then find AB and BA
R 3 4 H2 -H

Solution : Thenumber of columnsof A =3 =thenumber of rowsof B. Hence AB isdefined and

0 1 210 1 -2

AB= 2 3531 O

2 3 4H2 -H
01+1(-)+22 02 +1L.0+2.()0 03 2]
=H1+2()+32  L(D)+2043(DE =5 5
R.1+3(-) +42  2(2) +30+4(DF H7 &

Since the number of columns of B isnot equal to the number of rowsof A, BA isnot defined.

01 -2 37 m o0 2
) _0 0 _0 .
2. Problem: IfA—DZ 3 JDand B—DO 1 % then examine whether
3 1 24 H 2 @

A and B commute with respect to multiplication of matrices.



Solution: Both A and B aresquare matricesof order 3. Henceboth AB and BA aredefined and are
matricesof order 3.

M.1+(-2).0+3.1 1.0+(2).1+3.2 1.2 H 2).2 +3.00
0 0
AB = [21+30+(-D)1 20+31+(-).2 22432 « 4).07
H-3).1+1.0+21 -30+L1+22 32 +.2 +2.01

1 0201 -2 3 0O 0 @
BA= D1 292 3 -5 =4 5 3
H 2003 1 Z HS 4 #
which showsthat AB # BA.
Therefore A and B do not commute with respect to multiplication of matrices.
3.Problem : If A = ﬁ(l) —(iﬁ then show that A% = — 1.

,_ O ool @_Gg?z @
Solution: A = HO —iHHO ‘E_EO iE

1 00 M @

“Ho -H PR 577"

cos 9 in 0
4. Problem: If A = 2 . - E]then show that for all the postive integersn,
H—sm 0 cos OB

n_ Jcosnd  sin N6
H—sinn@ cos nGH

Solution : We solvethisproblem by using the principle of mathematical induction.

Consider the statement P(n) : A" = DCC_)S no sin noQ
H—smne cos nOH

. [0cosO sin O[] )
Since A = . , P(n) istruefor n=1.
H-S!n 0 cos OH

Supposethat the given statement P(n) istruefor n=k, k=1.
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Ocos kO  sin k6O

k —
Then A" = H—Sinke cos kOH

Consider AKL= Ak A = DC(?S ko  sin k60O c?s 0  sin @
H—smk@ cos kOHH—sm 0 cos (H

_ [ cosk0.cos O —sink0.sin®  cosk0.sin@+ sink0.cos® [
- H—Sin k6.cos 0 —.cos kOsin® —sink0.sinf +cosk6.cos6 H

_ Ocos(k6+6) sin(k0+0) O(. cos(A+B)= cosA.cosB-snA.snB;
" Hsnko+0) cos(ko+0)H sin(A+B)=sinA.cosB+cosA.snB)

_ Ocos(k+1)0  sin(k+1)0 0
" Hsink+16 cos(k +1)6H

Therefore P(n) istruefor n= k+1.

Hence, by mathematical induction, P(n) istruefor all positiveintegral values of n.

o 2
5 Problem: If A = Bz 1 zg then showthat A?-4A -5| = O.
H 2 15
M 2 201 2 2109 88
A 2 _ _ [] 1
Solution:  A2= A.A =21 zgmz 1 %_Ds 9
H 2 1942 2 HH8 8 8
M 2 21 04 8 8§
A=4p2 1 29=058 4 8
H 2 1 H8 8 #
L 0 00 050 @
5|=5%0105:505(g
0 0 18 HO 0 H



Exercise 3(b)
I. 1. Findthefollowingproductswherever possible
a0
() e w 0. o ‘88p
) |[-1 4 2 iy d O
@2 2 100-2 -3 40
—2][|4 —ID . 0 00 O
(iii) % D[I2 vy @ 02g02 2 -3
21201 2 2
B 4 90 010
0 om3 -2 00 . DpoOgd2 1 4
V) ® -1 5DDO 4 15 (i) D‘Z]BG 5 3%
O O .0 -
2 6 12 010
o ¢ —bD%az ab ac%
- O O
(vii) gl 1551% Gii) gc 0 ag@b b2 bl
O O
ol oot B &b -a OE@C bc c’g
2 30
01 -2 3 o 0 . .
2. If A= Jand B = |34 SD,doABandBA exist?|f they exist,
T4 2
2 17
findthem. Do A and B commutewith respect to multiplication ?
04 20
3. FindA2whee A= O Q.
o1 1o
a oo 5
4. If A= 0, find A<
i
0 0O 00 -O 00 @ . : :
5 IfA=0g [0B=g and C=g [ andlistheunit matrix of order 2, then show
-ig ot (% ol 8
thet
(i) A2 = B2=C?=~1
(i) AB=-BA = -C.

2 10 032 o _ -
6. If A= [pand B=(] 0 ,find AB. FindBA, if itexists.
a1 3 0l 0 4
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02 40 _

CIf A= and A2=0, then findthevalue of k.
1l kg
B 0 OO

O O _ 4
If A=0 3 0, thenfindA™.

o 0 3

01 1 37

0 0 _
CIfA=05 2 6, thenfindA3.

g2 -1 A

o1 -2 10

[l
A= %) 1 -1 thenfind A3 —3A2 —A =3I, wherel isunit matrix of order 3.

3 14

1 0O 00 1
Cf = %) 15 and E =] ‘% then show that (al +bE)3: 3| +3abE, wherel isunit matrix

o
of order 2.

. IfA=diag[a,,a,, a;], thenfor any integer n =1 showthat A" = diag[a{', a3, aJ] -

Cf 0—go=g, then show that

%)OS %9 cos Bsin OEBCOS 2(p Ccos ¢sin (% 0.
FCos 6sin 6 sin? 0HHcos @sin @ sin? 7]

B -40 N A+2n -4 ) )
CIfA=Q 0 then show that A” = O for any integer n=1, by using
1 -1 m 1-2ng

mathematica induction.

. Giveexamplesof two squarematrices A and B of thesameorder for which AB =0, but

BA # O.

. Atrust fund hastoinvest Rs. 30,000 in two different typesof bonds. Thefirst bond pays5%

interest per year, and the second bond pays 7% interest per year. Using matrix multiplication,
determine how to divide Rs. 30,000 among the two types of bonds, if the trust fund must
obtain an annual total interest of (a) Rs. 1800 (b) Rs. 2000.



3.3 Transposeof amatrix

In this section we define the Transpose of a martrix and study its properties. We also define
symmetric and skew symmetric matrices.

3.3.1 Definition (Transpose of a matrix)

If A= [aij] isan m X n matrix, then the matrix obtained by interchanging the rows and
columns of A is called the transpose of A. Transpose of the matrix A is denoted by
A or AT. Inother words, if A= [aj]nxn, then A'=[aji]ixm-

For exampleif
03 20
AD41DthA'EB40D
=0 0 en A = 0.
O 0 R 1 J70
00 V70

3.3.2 Properties of transpose of matrices

We now state the following properties of transpose of matrices without proof. These may be
verified by taking suitable examples.

For any two matrices A, B of suitable orders, we have

() (AY =A (i) (KA) = kA’
(i) (A+B) = A' +B (iv) (AB) =B A
3.3.3 Example
ia=0 " Baap=n° ¥
% 5 87 04 -2 —%

Verifythat (i) (A"Y =A (ii) (A+B) =A"+B (iii) (5B) =5(B)
Solution

Weh A = a 4 70
()] e have %58
. 20
O 0
O = X
7 &
a 4 70
(A)-EZSEEA.
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a4 7m0 03 4 O

(i1 A+B = O+0
% 5 8 g4 -2 —%
2 8 70O
=0 [
06 3 74
2 6]
W [
O (A+B)= g8 3
97 T
M 20 0-3 4 02 6
o 00 (1 0 (]
A+B =@ g+g4 553 8 3 =(A+B).
7 8 00 -5 07 @
(i) We have 5B 5&3 O
iii) We have =50
04 —2 -15
15 20 0O
= O [
020 -10 -5
+15 200
t [l
(5B) = 020 -107
0
70 -5
15 200
i [l
also 5B' = 720 -107
[l
70 -5
Thus (5B)' = 5B'.
3.3.4 Example
01 -20
02 -1 23 O U .
IfA = 0 and B= 33 07 thenverifythat (AB)' = B A'.
nl 3 -4 0 0

05 44



Solution
01 -2
Wehae AB n2 -1 21]53 q% 015 4
e have =0 O o =0
0l 3 49 0O 028 -15
0° 44
1 (AB) 015 -287
= 0 0
0 4 -18;
02 1O
O O -3 5]
Now A'= 1 37 and B' = - 4%
0 0 o
02 49
02 17
QB A 01 -3 51]51 3% 015 —28
= 0 01 = 0
o2 0 4o o o 4 -1
02 —40
Hence (AB)' = B A'.

3.3.5 Definition (Symmetric matrix)

A sguare matrix A is said to be symmetric if A'=A.

3.3.6 Note

() Thezeromatrix O, , any diagonal matrix and theunit matrix ., aresymmetric.

)'[h

(i) If Aisasymmetricmatrix,thenthe (i, j) element of A isthesameasthe (] ,i)th

element of A.
Cayy &, a30 01 2 00
0 O 0O 0
Let A= [Py a»n a3g=0g2 83 -1
0 O O O
(Ba1 & agpp 00 -1 43
Observethat &, = ay =2, &3 =83 =0 and a,; =ag, = -1. SOA issymmetric.
(i) If A isasquarematrix,then A +A' isasymmetric matrix.

3.3.7 Definition (Skew-symmetric matrix)

A sguare matrix A is said to be skew-symmetric if A' = - A.

0o 1 -2
00 -0 0 O : :
For example, [ gand 1 0 47 areskew - symmetric matrices.

S P
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3.3.8 Note
() Thezeromatrix Oy, iSSkew-symmetric.
(i) If A isaskew-symmetric matrix, thenthe(i, j)™ element of A isthe same asthe negative of
the (j,i)" elementof A.
Oy ap &30 00 1 -20
O o 0O 0
Let A=ay; ax»p apg=0l 0 40
O o 0
o1 2 amn 02 4 OO
Observethat a, =1=-ay;, &3 = -2 =-a3; and ay,; =4 = -85,
sincethediagonal elements a;;,a,, and a;3 do not changewhiletransposing the given matrix, if
A =Hg; Ean isaskew symmetric matrix, then a; =-g; o that a; =0(i =1, 2,...n).

(iif) If Aisasguarematrix, then A —A' isaskew-symmetric matrix.

(iv) If Aisasymmetric (or skew-symmetric) matrix, then kA isa so symmetric (or skew-symmetric) for
any scalar k.

3.3.9 Solved Problems

2 1 @ 01 20
Ey .
1. Problem: If A=[g ] and 5:54 38 thefind A+B' .
03 4 -5 O 0
ol 50
) +2 1 0O 01 4 -0 1 5 -1
Solution: A+B'= [ 0+0 0 =0

0.
03 4 -570 g2 3 o 05 7 0

F1 20
2. Problem: If A= 0 then find AA'. Do A and A" commute with respect tomultiplication

0o
of matrices?
Soluti A’ 51 X
ution : = 0
02 I
1 201 @ O(D)(H+22  (DO+21 052
AA'= [ o0 0T o8 _0 .
00 Iongo2 § g O0(-D+12 00+1@ o 21
31l ool 2 O()(-D+00  (DH2+0d 0 1 R
AA= [ 00 0= 0 7 0 .
02 1IOogo0 § g 2(-1)+10 22413 0 2 5

Since AA'# A'A, A and A' do not commute.



00 4 -2
O 0
3.Problem: If A=r4 0 87isaskew symmetric matrix, find the value of x.
O 0
02 8 xg

Solution : A isaskew symmetric matrix and x isan element of thediagonal. Hence x=0.

4. Problem : For any nxn matrix A, prove that A can be uniquely expressed as a sum of a
symmetric matrix and a skew symmetric matrix.

Solution: A+A' issymmetricand A-A' isaskew-symmetric matrix and
1 1
= Z(A+A) + Z(A-A
2( ) 2( )

To prove uniqueness, let B beasymmetric matrix and C beaskew symmetric matrix such
that A = B+C.

Then A' = (B+C) =B +C =B -C
and hence B = %(A +A")

and C = %(A ~A") .

Exercise 3(c)

ta=02 0 Bade=2t 1 tenfind(amy
. 1 =0 Dand B =[] enfin ).
71 1 53 0o 1 -
+2 10
O 3 1O _
2. If A=g5 OpgandB=[ 0 thenfind 2A +B' and 3B'—A.
O O 04 0 2

02 -40
3. IfA=0
5

O
4. 1f A=2
03
0o

T
F1 2
5
X
2
5 IfA=g2 0
X
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0o 1 4
O 0
6. Is1 0 7symmetricor skew symmetric?
T4 -7 of
Ocosa snal
. 1 If A=g [, show that AA'=A A =1.
[Tsina cosaf]
01 5 3 02 -1 @
U U | [l
2. IfA=g2 4 O0gand B=[ 0 -2 ©5thenfind 3A -4B".
H3 -1 -5 H1 2 ¢
07 -2 0-2 -1
O O O 0 )
3. fA=71 2gand B=g4 27thenfind AB'and BA'.
O O O
0% 30 0-1 (E

4. Forany squarematrix A, show that AA’ issymmetric.
3.4 Determinants

Consider the system of two linear equationsin two variables,

ax+by =¢
ax+by = ¢

where ¢ #0 or c,#z0.

We have learnt in lower classes that this system has a unique solution or not according as
b, —a by isnot zeroor zero. Inother words, a,b, — a b, determines whether the system hasa

unique solution or not and henceit iscalled the'determinant' of the system. Hence we associatethe

0
value a b, — a, by, tothematrix éﬁl :;E and cdl it the determinant (s mply determinant) of thematrix.
2

Thedeterminant of 1 X 1 matrix isdefined asits el ement.

In thissection, we definethe determinant of a3 X 3 matrix, study its propertiesand the methods of

evauation of certain determinants.



3.4.1 Definition (Minor of an element)

5 o
Consider a square matrix [@ b, ¢

(] O
s by GO

The minor of an element in this matrix is defined as the determinant of the 2 x2 matrix,
obtained after deleting the row and the column in which the element is present.

. . o O
For example theminor of a, isthe det. of 5}3 %E—blcg—b?,cl

_ _ Gy o0
and theminor of b, isthedet. of %a 5_61%_‘32 C.
2

3.4.2 Definition (Cofactor of an element)

The cofactor of an element in the i row and thejth column of a 3X3 matrix isdefined as
its minor multiplied by (-1)'*J.

We denote the cofactor of a j by A; I

For example, consider thematrix in 3.4.1.

Since a, isin 2" row and 1% column, we have
A, = cofactor of a, =(-1)*" (b c3 -bs )

= - (b c;-bs0)
= D3¢, -b G

Sinceb, isin 3" row and 2™ column, we have
B; = cofactor of b,

= (-)*? (&, —3,0)

THG 6.
3.4.3 Example
01 0 -2
Inthe matrix% 3 -1 Zgwelist out here under, the minors and cofactors of all the elements.

04 5 &
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dement dement Minor Cofactor
i presentin of &; of &;
row i, columnj

-1 2|

1 1 5 al= (-)(-16) = -16
32|

1 2 o (-1*2(10) = -10
3 -1

1 3 T (-1)"3(19) =19
0 -2|

2 1 A (-)%(10) = -10
1 -2|
10 e

2 3 45 (D> =-5
0 -2| ,

3 1 1 o (-1*%(-2) = -2
1 -2 g

3 2 a4 5 (-1)°2(8) = -8
1 0] .

3 3 3 | (-D%*3(-) =1

3.4.4 Definition (Determinant)

&y b ¢l
0

] U
s b3 G

ad
Let A=[& b, c,[. The sum of the products of elements of the first

row with their corresponding cofactorsis called the determinant of A.

&y b ¢O

O O
s by GO

a
0 O
Thedeterminant of thematrix @, b, c,iswrittenas |a,
as
Weaso denotethe determinant of thematrix A by det A or |A].




det A = aA;+bB, +¢C
So far we have defined the concept of determinant for square matricesof order nforn=1, 2, 3.
The concept can be extended to the casen = 4 also using the principle of mathematical induction. Let

n 2 4 and suppose that we know the definition of determinant for square matricesof order n-—-1. Let

n
A =[a;]nxn- Thenthedeterminant of A isdefinedas Zaﬂ Aqj, where Ay isthe cofactor of ay;.

3.4.5 Example =
0ol 0 -0
. . U O
Let us find the determinant of A=33 -1 27
94 5 6
det A = sumof theproductsof elementsof thefirst row with their

corresponding cofactors
= 1 (cofactor of 1) + 0 (cofactor of 0) + (—2) cofactor of (=2)
1(=16) + (—2) (19)
= —16—38= —54.

3.4.6 Note

The definition of the determinant isformulated by using the elements of the first row and the
corresponding cofactors only. However the process can be adopted for the elements of any row or
column and the corresponding cofactors. Wethus have

n
det A = Zaiinj for 1<i<n.
1=l
Herethe sum ontheright hand sideisindependent of i.
(& b O
O []
If A=@ b ¢

O O
@ b3 GO
then observethat det A = A+ B, + ¢,C; expansion aong first row

dmilaly det A = a,A, + b,B, + ¢c,C, expansion along second row

agA 3 + B3 + c;C5 expansion aong third row
yA + aA, + agAz expansion aong first column
= B, + b,B, + byB;  expansion along second column

= ¢,C; + ¢,C, + ¢5C5 expansion along third column
For instance, consider
QAL+ A, + A3A3
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= a0 g sy Cl‘
b, ¢
= ay(byC3 —s0y) —ap(biCs —y0y) +a3(yc, —bycy)
= ay(byC3 —y0y) —by(8C3 —83C,) +Ci(axhs —aghy)
= aA; +bB; +¢C =det A.
3.4.7 Examples
01 -10
1. Findthedeterminantof A = 0.
3 1
Solution: det A=1-1—("3)(71)=1—3="2
02 -1 40
0 (1
2. Findtheminorsof =land3inthematrix ;O -2 57,
T 13
Solution: Minorof -1 = > = 0.3-(3).5 =15.
-3 3
Minorof 3 = = 2(2) -0 =-4.
. _2‘ (-2) -0 1Y)
-1 0 &
3. Findthe cofactors of the elements 2, —=5inthe matrix E 1 2 ‘3%-
T4 5 &

Solution : Theelement 2is (2, 2)™ element of the given matrix.

Hence cofactor of 2 = (=1)%*2

-4 3
= (-)B-(AB
= -3+20 =17.

Theelement =5 is (3, 2)" element of the given matrix.

Hence cofactor of -5 = (-1)3*2

1 -2

-[(-1) {-2) -1 ]
~(2-5) = 3.



01 -1 23
4. Find thedeterminant of the matrix B 3 0 4%
T4 2 5
Solution: Cofactorof 1 = (-pi* 4 =8.
-2 5
3 4
Cofactor of -1 = (-)*2 = -31.
-4 5
3 0
Cofactorof 2 = (-3 = -6.
-4 -2

Now | 3 0 4

1 -1 2

108 +(-1) [-31) +2 [-6) =8 +31 42 =27.
4 2 5

3.4.8 Properties of determinants

(i)

(i)

(iii)

If each element of arow (or column) of asguare matrix is zero, then the determinant of that
matrix iszero.

Theva ue of the determinant of such amatrix can beeasily found to be zero by expandingit along
arow (column) containing zeros.

If two rows (or columns) of asquare matrix areinterchanged, then the sign of the determinant
changes.

Ea1b1015 Eazbzczg
Let A= [azbzczmandB mblclm
@3'0303& Bﬂa%%[l

( B isobtained by interchanging first and second rowsof A)
det B = ay(~1)*" (b,c3 ~bacy) +by ()" (azcs ~a4C)
+¢ (=) (ayb; —agb,)

= —[ay(byc3 —bsCy) —by(aCs —asC,) +Cy(axh; —aghy)]
= —det A.

If each element of arow (or column) of asquare matrix ismultiplied by anumber k, then the
determinant of the matrix obtained isk timesthe determinant of the given matrix.

Elal b O Bkal by q%
Let A= b, O, B=pka, b, o

O O O O
s by G Okas by G
( B isobtained by multiplying the elementsof first columnof A by k)
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If thecofactorsof &, a,, ag in Aare A, A,, Az thenthecofactorsof ka, kay, kag inB are
aso Aq, A, A respectively. Hence
det B = kay Aq+ ka, A, + kagA,
= k(g Ap+ay Ay +83A3)
= k(detA).
(iv) If A issguarematrix of order 3and kisascalar, then | KA | :k3|A|. By applying property
(iii), threetimes, we get the result.
(v) If tworows(or columns) of asguare matrix areidentical, then the determinant of that matrix is
zexro.

E$1blch
Let A= EﬂzbzczD

E‘ﬁz b, szD
(second and third rows areidentical)

Then det A = aA;+bB;+¢C;

= 2 (0) +by(0) +¢,(0) =0
(vi)  If thecorresponding € ementsof two rows (or columns) of asquare matrix areinthesameratio,
then the determinant of that matrix iszero.

&y b C_LS
LEtA:H(alkb_chlD
0 0
s by GO
a b g
det A = |ka, kb ko
& by c
a b g
=kla, by ¢ | by property (iii)
& by c

k (0) by property (v)
0.

(vii)  If eachelementinarow (or column) of asquare matrix isthe sum of two numbers, thenits
determinant can be expressed asthe sum of the determinants of two square matrices as shown

below.

Then

Cy+x b0 O b cd Ox b &
0 0 O B

O] O]
LetA=@+% b, 0 B=pga b ¢, CEax b g
U U U U 0 U
s +X b3 ¢ 03 by ¢ 0% by g



If in A, the cofactors of & +x, a, +X%,,a3 +xgare A;,A,, A5 then the cofactors of
&, 8,83 inBandof x,%,, X3 inCarealso A;,A,,A; respectively.

Now,
det A = (ay+x)A;+(ay +X) A +(8g +X3)Aq
= (A1 + A, +a3A3) H(XAL + XA, +X3A3)
= det B + det C.
ytx b g a b gl | b g
0 a2+x2b202:a2b202+x2b202_
Btxg by G |ag by ¢ [xg by ¢

(viit)  If each lement of arow (or column) of asquare matrix ismultiplied by anumber k and added to
the corresponding el ement of another row (or column) of the matrix, then the determinant of the
resultant matrix isequal to the determinant of the given matrix.

[al by C_LB B Gl by G D

LetA = Diz b, Cz[landB Day +kay by +kby 02+k0D
O O

[1’:13 bs CeD O as bs G

(Bisobtainedfrom A by multiplying each element of the 1% row of A by k and then adding
them to the corresponding elements of the 2" row of A )

a b g a b g
detB =|a, b, c,| + |ka kb k| by property (vii)

& by ¢ a3 by ¢
a b g

=|ay, b, c,|+0 by property (vi)
a by c
& b g

=|a, b, c,|=detA.
& by c

(ix) The sum of the products of the elements of a row (or column) with the cofactors of the
corresponding el ements of another row (or column) of asquare matrix iszero.
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Oy b O
O] O]
LetA=[, b, ¢

O O
s bs G

Consider the sum of the products of the elements of the second row with the cofactors of the
corresponding elements of thefirst row.,

e, 8 A1+ B +6, G

: ‘ 2] Cz‘ a b
= +(}2
b3 ! a3 G a3 by
a b
=|a, b, c;| =0 by property (v).
a3 by ¢

(x) If the elements of a square matrix are polynomials in x and its determinant is zero when
X =@, then x —a isafactor of the determinant of the matrix.

Efl(x) 01(X) rh(X)B
Let A(x) = Of2(X) 92(%) hx(X)O,
Fa(0 5509 (03
Now det [A(X)] isapolynomia inx.
If det [A(a)] =0 then by Remainder theorem, x—a isafactor of det [A(X)].
(xi)  Forany squarematrix A, det A = det (A).

[alb.l.clg galaz ag]
LetA = @ b, ¢ then A’ —EIb.L b, bﬂ
%3*330@ DCLCZOED

Thevaluesof thecofactorsof ag,by,c;, aresameinboth A and A,
HencedetA = a A, +by B, +¢;C; = det A",

(xil)  Det (AB)=(det A) (det B) for matircesA, B of order 2.
Ean CP) D B - Dbn blZD
@21 a0 E Eb21 bzzD
det A= ay; 8y — @ ap; det B=by; by — by by,
[311 CiP) D Dbn b12E|
@21 3 E Eb21 bzz@

Consider thematrices A =

Now AB =



Ea11b11+a12 By &byt by D
@21 bia+ag by ap by +ag by E

det (AB) = (ayg by +agp by ) (p1 brp +apy by ) (a1 byg +an 1) (201 b1p +ag2b20)
= @y 31 Oy1 o + &gq 3 3 Byy +ay, apy by Byg +ay, A% By by
—&yq 31 b1y By —ayp ay by Byy —ayq @y By By — 335 8yp byy by

= 341 Ao 11 Dy +395 A1 D1y Byy — A5 A by Byy — 35 A D1y by

= ay1 8y, (P11 by ~b1o byy ) — 15 8 (11 Brp 1o bs1)
= (ay189 ~ @12 81 ) (b1 0 ~b15 b1 )
= (detA) (detB) .
If A andB arematricesof order threethen also inasimilar manner we can show that
det(AB) = (detA) (det B) .

Thisistrueingeneral, for all matricesof order n; the proof of thisisbeyond the scope of this
book.

(xiii)  For any positiveinteger n, det(A") = (det A)".

(xiv)  If Aisatriangular matrix (upper or lower), then determinant of A isthe product of thediagonal
elements.

3.4.9 Notation
Whileeval uating determinants, we use thefollowing notations.

(i) Ry o Ry, tomeanthat therows R, and R, areinterchanged.

(i) Ry — KRy, tomean that the elements of R, aremultiplied by k.

(i) Ry —» Ry+kR, to mean that the elements of R, are added with k times the corresponding
elementsof R,,.

Similar notation isused for other rows and columns.

3.4.10 Solved Problems

1a a
1. Problem: Showthat |1 a b?|= (a-b)(b-c)(c-a) .

1a c?



1 a a2
Solution: LHS. =11 b p2
1 C CZ

Onapplying R, - (R,-R;); R3 - (R3—-R;) onLHSweget
1 a a?
LHS =|0 b-a b?-a?
0 c-a c?-a?
On expanding the det. along thefirst column, we get

b—-a 2 _ .2
_1 b -a

c—a CZ _a2
=(a-b)(b-c)(c-a) = RH.S.

2. Problem : Without expanding the determinant show that

b+c c+a a+b abc

c+a a+b b+c| =2|b ¢ a]l.

a+b b+c c+a cab
Solution :
b+c c+a a+b
L.HS. = |[c+a a+b b+c

at+tb b+c c+a
2(a+b+c) 2(a+b+c) 2(a+b +c)
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= | c+a a+b b+c | (byapplying R; - Ry +R, +R3)

a+b b+c c+a

a+b+c a+b+c a+b+c
= 2| c+a a+b b+c

a+b b+c c+a

a+b+c a+b+c a+b+c

(by applying R, — Ry —Ry

=2 -b -C -a

-C -a -b



a b c¢

(by applying R; —» R; +R; +R3)

=2|-b ¢ -a
-c —a b
abc abc
=2(-D(DY b c al =2|b c al| =RHS
cab cab
1 22 8
3.Problem: Showthat |1 p2 p3|= (a—b)(b-c)(c—a)(ab +bc +ca).
1 ¢ ¢
Solution:
1 g2 38 0 a®-c¢? a®-c
LHS =|1 p2 p3| =[0 b*-c® b°=c®| (byapplying R, — Ry~Rs; R, — Ry ~Rs)
1 2 3 1 c? c

0 a+c a’+ac+c?
(a-c)(b-c) |0 b+c b?+bc +c?

1 c? c?

a+c  a’+ac+c?

o

= (a-c)(b-c) |0 b-a b?-a®+bc-ac|  (byapplying R, — R, -Ry)

1 c®

0 a+c a’+ac+c?
= (a-c)(b-c)(b-a)|0 1 c+a+b
1 c? c3

2 2
= (a-0)(b-0)(b-a) a+c a“+ac+c

1 a+b+c

= (a-b)(b-c)(c—-a)(ab +bc +ca) =R.H.S.
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1 o o
4. Problem : If ¢ is complex (non real) cube root of 1 then showthat | o« 1|=0.
Solution : Method 1 @ 1w
1 w o
LHS = |ow of 1
W 1
ltw+ef l+wtd 1+ wt @
= W of 1 by applying R; — Ry +R, +R5
w? 1 W
0O 0 O
=|w « 1|=0=RH.S. (+1+w+ 7 =0).
W 1 w
Method 2
1 0w o b w A & 1
w f 1l=|w & 1|=w o & 1] =0
o 1 o | 1 @ 1
a-b-c 2a 2a
5.Problem: Showthat | 2b b-c-a 2b |=(a+b+c).
2c 2c c-a-b
a-b-c 2a 2a
Solution: L.H.S. = 2b b-c-a 2b
2c 2c c-a-b

a+b+c a+b+c a+b +c

2b b-c-a 2b applying R; - R; +R, +R3
2c 2c c—-a-b
1 1 1
(a+b+c)|2b b-c-a 2b
2c 2c c-a-b



1 0 0

applying C, - C, =G,

=(a+b+c)|2b b-c-a 0
Cs ~Cs=Cy

2c 0 -c—a-b
-b-c-a 0

0 -c—a-b
6. Problem: Show that the determinant of skew- symmetric matrix of order three is always zero.
Solution: Letusconsider askew-symmetrc matrix of order three, say -

= (a+b+c) =(a +b +c)® =RH.S.

M -c -bO 0 -¢c -b
U U

A= 0 -aq O |Al=fc 0 -a
b a o0p b a 0

+¢(0 + ab) — b(ca - 0) = abc — abc = 0.

Hence |A| =0.
Observethat the determinant of skew-symmetric matrix of order two need not be zero.

2]
For example A = ] isskew symmetric matrix of order 2, anddet A # 0.

22
Xx—-2 2x-3 3x-4
7.Problem: Findthevalueof xif |[Xx—4 2x-9 3x-16| =0.
X—-8 2x-27 3x-64
Xx—-2 2x-3 3x-4
Solution: [x—4 2x-9 3x-16
X—-8 2x-27 3x-64
Xx—-2 2x-3 3x-4
=| 2 6 -12 |applying R, -(R; —R;), Ry —(R3 —Ry)
-6 -24 60
X—2 2x-3 3x-4
=(-2)(-6)| 1 3 6
1 4 10

X—2 2X—-3 3Xx-—

Now giventhat | 1 3 6 |=0.
1 4 10
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Expanding the determinant along the elements of first row, we have
(x=2)(30-24) - (2x =3) (10 -6) +(3x —4)(4 -3) =0
i.e, 6(x—2)—-4(2x-3) +(3x —-4) =0

i.e, Xx—-4=0. Hence x=4.

Exercise 3(d)
. 1. Fndthedeterminantsof thefollowing matrices.
n T L @ 9430
M -5 6 23
e 7 -5
o .
(iii) %) 0 (vy 0 1g
C 310
01 20 2 -1 40
0 [
© g2 14 V) @ -3 1
33 7 6] 4 2
m 2 -3 e h gO
(vii) Eg -1 7% (viii) Ep b fE
2 4 -60 Bt oo
@ b o 012 22 320
) O Dz 2 2D
(IX)%JcaD (x) [@2° 3° 4°0
0 O O, o oH
[t a by B 4 5[
1 0 0OJ

O
2. If A:% 3 4and det A = 45thenfind x.

5 -6 X



bc b+c 1

. Showthat|ca c+a 1| = (a-b)(b-c)(c-a).

ab a+b 1

b+c c+a a+b

. Showthat |a+b b+c c+a| = a° +b° +c® —3abc.

a b c

y+z X X

. Showthat| vy z+x 'y |= 4xyz.

a a® 1+a° aa 1

C1f |b b% 1+b%|=0 and |b b? 1| #0 then showthat abc = -1

c ¢ 1+c° c ¢ 1

a a° bc 1 a2 a°

. Without expanding the determinant, provethat (i) |b b%> cal= |1 b®> b3|.

c ¢® ab 1¢® ¢
ax by cz a b c 1 bc b+c 1 a a’

Gy |¥* y? Z2|=|x y z (i) |1 ca c+a|=[1 b b

1 1 1 yZ X Xy 1 ab a+b| |1 ¢ c?

al+b +0 aa, +b, +C, aag +hy +c;

A =] b+ bY+c bybs +c; | and

2

G ) C3

a b g
A, = |a, b, c|,then findthevaueof

& by c

4
Ay



. Showthat |a x a|=(x+2a)(x—-a)“.
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1 cosa cosP 0 cosa cosP

. If Ap=|cosa 1 cosy|,A,=|cosa O cosy|and A, =A,,then show that

cosf cosy 1 cosp cosy O
cos® o + cos® B + cos?y = 1.

a+b+2c a b
. Show that c b+c+2a b = 2(a+b +c)°.
c a c+ta+2b
. Show that
ab cf |2c-a2 2 b?
bcal=| ¢ 2a-b* a® |=(a°+b®+cd-3abc)?.
cab b2 a?  2ab-c?

a’+2a 2a+1

. Showthat |2a+1 a+2 1 =(a-1)°.

3 3
a b c

. Showthat |a® b? c?|=abc(a-b)(b-c)(c-a)-

a b ¢

-2a a+b c+a

. Showthat [a+b -2b b+c|=4(a+b)(b +c)(c +a).

c+a c+b —2c
a-b b-c c-a

. Showthat |[b—-c c—a a-b| =0,

c—a a-b b-c
1 a a’-bc

. Showthat |1 b b®-ca|=0.

1c c®-ab

X a a
2

a a X



3.5 Adjoint and Inverseof aMatrix

In thissection, we define the concepts of invertibility of amatrix and the multiplicativeinverseof an
invertible matrix and study certain properties of inverses and provide a method of finding the
multiplicativeinverse of agiveninvertible matrix.

3.5.1 Definition (Singular and Non-singular matrices)

A sguare matrix is said to be singular if its determinant is zero. Otherwise it is said to be
non-singular.

B 20 . oo B 20 .
Forexample, 7 isasingular matrixwhile 7 gisnon-singular.
40

3.5.2 Definition (Adjoint of a matrix)

The transpose of the matrix formed by replacing the elements of a square matrix A (of

order greater than one) with the corresponding cofactorsis called the Adjoint of A andis
denoted by Adj A.

2 b o
Let A = @ b, c;mand A;, B;, C bethecofactorsof a, by, ¢ respectively.
U g
B b3 GO
My B GO DA, Ay Af
: [] U U U
Then AdJA = |ﬁ2 BZ Czl] = DBl BZ Bﬂ

(] (] (] 0
Ms By CGg 0G C, CH

3.5.3 Definition (Invertible matrix)

Let A be asquare matrix. We say that A isinvertibleif a matrix B exists such that
AB = BA =1, wherel isthe unit matrix of the same order as A and B.

3.5.4 Note

(i)  Fortheproducts AB and BA to beboth defined and equal, it isnecessary that A and B are both
sguare matrices of the same order. Thus, non-square matricesare not invertible.
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(i) If A isinvertible then A isnon-singular, hencedet A # O.

[Let A beinvertible. Thenthereexsistsa matrix B suchthat AB =1.
Hence (det A) (det B) =det (AB) =det| =1. Hencedet A £ Q].

(i) If Bexists; suchthat AB =BA =1, thensucha B isuniqueand isdenoted by Alandiscalled
themultiplicativeinverseorinverseof A.

[For, if B and C are inverses of A, then by definition AB = BA =1 and
AC=CA=1. Then B=BI=B (AC) =(BA)C=IC=C].

3.5.5 Theorem
Let A and B beinvertible matrices. Then A™*, A and AB areinvertible. Further
i @ahHt=a
(i) (AY =A™
(i) (aB) 1= BtAL
Proof: (i) Le&eA™=C. Then CA=CA =1.
By 3.5.4(ii), C isinvertibleand the multiplicativeinverseof C isA
ie, C1=A
ie, A HT=A.
(i1) Consider
AYA D =(ATA) =1'=1. (D)
Smilarly,
AHA) = AAD=1"=1. (2
From (1) and (2)
A)A™ = (A R) =1
0 By definition A isinvertibleand themultiplicativeinverseof A'is(A™)

ie, (A) = (AY.



(i) SinceA and B areinvertible, we have
AATI= ATIA =) .. (1)
ad BB l=BB=I. .. (2
Now
(AB) (B*A™)

= A (BB 1)A™, by Associative law

AA™, by (2

(ANA™

= AA_]': |, by (1)
Smilarly

B1aYh @B =B1(A1A)B =B ()B
=B (IB) =B™'B =I.
0 Wehave (AB)(B1A™ =(BTA) (AB) = 1.
Henceby definition ABisinvertibleand themultiplicativeinverseof AB isB™ A™.

ie, (AB)1=B1Aal

3.5.6 Theorem
&y b g0 -
0 O _1_ AdiA
If A= @ b, COisanon-singular matrix thenA isinvertibleand A ~ = A
Il [
@ b3 O

Proof : By definition,

A, A, Ayl
. O O
Adi A= B; B, B

€ G G

B b G0AL Ay A

_ 0 0 0
Now A*(Adj A) =& b, c0B; By Bg

0 00 0
s by oG G, Cg



SalAl*'blBl +GC A, thB, +6C,  aA; +hBj +°1C3%
A1 thBy +6,C aA, B, +6,C,  axAg +,B3 +6,C50

0 |
[RsA +3B; +C3Cp  agA, +3B, +63C,  agAg +hiB3 +63C50

GetA 0 0
O
00 deA O

50 0 deA

10 00
0 O
= detA © 1 0

® 0 19
= (detA)l.

U
U
U
g
U

Now, sincedet A #0, we have A.Ad—JA =
detA

AdjA

imi ——.A =1
Similarly, we can show that Jet A .
LetB = Ad—JA. ThenAB =BA =1,

det A
_ AdiA
.. . Al- g = 294
Hence A isinvertibleand det A

3.5.7 Solved Problems

1
1. Problem: Find the adjoint and the inverse of the matrix A:%

o i

= 1(-5)-32 = -5-6 = -11 #.

1
Solution  detA = ‘3

Hence A isinvertible.

_ +5 -3]
Thecofactor matrixof A = O
2 I

5 -3 0-5 -2
0 F O 0.
2 1o g3 §

0 Adj A
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05 20
Al AdA_ 1 05 %ﬁ 118

O

= O OF
det A -11 T3 1o 13 —_]_D
Hi 110

2. Problem :  Find the adjoint and the inverse of the matrix A =

RO EOR
w » W
syt

4 3
3 4

13
14

14
13

Solution: det A =1

+3

= 1(16 -9) -3(4 -3) +3(3 -4) =7 3 -3 4 #0.

Therefore A isinvertible.

07 -1 -1

0 0

Thecofactor matrix of A isB= 5_3 1 qa

o3 0 15

07 -3 -3

_ O 0

OAdiA=B= 01 1 0

F1 0 1

07 -3 -3

_ i 0 0
naL AdA_ gl 1 03 (-detA=1)

ol 0 15

a2 10

0 0
3.Problem: Showthat A= 3 2 37 isnon-singular andfind A™.
112

33
12

2 3
12

3 2
11

Solution: det A=1

+1 =1-6+1=-4 70,

Hence A isanon-singular matrix.
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01 -3 13
: : 0 0
Thecofactor matrixof AisB =13 1 1

4 0 &

Thetranspose of B istheadjoint of A.

01 -3 40
O [
OAdA=B= 3 1 0
91 1 -4
o1 3 _1d
I]_Z 4 0
01 -3 4 (g 0
' 0 O
0 AL AdA_ iﬁ3 1 OF BE_E OB
det A -4 4 4
H1 1 -4 G 0.
- 01 1 40
Ha 2 B
Exercise 3(e)
I 1. Findtheadjoint and theinverseof thefollowing matrices.
_ - _ gdcosa -sinal]
0] EE :E @ o O
@ 6 [ Sina  cosaf]
L 0 20 @2 120
. [ . 0 O
(iii) % 1 07 (v 0 I
O O
32 1 22 1
Oa+ib c+iddD , , , : :
2. 1fFA=010g ~[g,a° +b° +c© +d“ =1 thenfindtheinverseof A.
rc+id a-ibg
01 -2 33
O O , N—1
3. If A= g0 -1 47, thenfind(A) ™"
O O

02 2 15



+1 -2 2]
0 [] ' -
4. 1f A= g2 1 -27,thenshow thattheadjointof A is 3A". Find A™1,
92 2 14
@ 0 0O
0 U
5. If abc # O, findtheinverseof [ b 0.
U
D 0 o
M 1 10 Ob+c c-a b-&
U U 10 [
I 1. fA= 0 17 and B ZEDC_b c+a a-Ipy ,thenshow that
Ell 1 q% Hb—c a-c a+l%
ABAisadiagona matrix.
012 2
0 O 1
2. 1f3A= 02 1 -2, thenshow that A" ~=A"
2 2 -1
(B -3 40
0 “1_,3
3. IfA= % -3 4, thenshow that A" =A~.
D -1 1

4. If AB=1 or BA =1, thenprovethat A isinvertibleand B=A ~1.

3.6 Consstency and Inconsistency of system of
Simultaneous Equations- Rank of aMatrix

We devotethissection for the study of therank of amatrix, existence and the nature of solutions of
asystem of linear equations - homogeneous and non-homogeneous, in two and three variabl es.

Consider thefollowing system of simultaneous non-homogeneous linear equations (two equations
intwo variables):
ax+hy=c g
0
ax+hy=cg
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These equations can be represented asamatrix equationasA X = D, where

ad
A= E?i le iscalled the coefficient matrix.
B b

X : :
X = [  iscalled thevariable matrix,
Yo

e . .
and D = [ [iscaledtheconstant matrix.
gc.0

AX = D isthematrix representation of the equationsgiveninsysteml, for

b O Oxd Da1x+bly:|
AX = [ ggog=gd
B b Oyo Eazx”bzﬂ

oy X + 0 0
AX = D becomes Dal blyD Dq]
Beox+b, y§ e

and corresponding elements of two equal matricesare equal.

The coefficient matrix augmented with the constant column matrix, iscalled the Augmented matrix,
generaly denoted by [A D]. Hence, theaugmented matrix of system | is

blch

[AD] =
@2 b, sz@

We listed the various systems of equations, along with the corresponding matrix equationsand
matricesinvolvedinthefollowing tabular form.



S0 1UTe |\ Bulpuodss.aio)

§ O O §
poe|m B (o P
0 O mﬁ 00 0 0| O=XV 0=z%+ A% +x% sumouxuN3au uisuofenbe
M » g % moy e 0% g %] 0=7D+ A+ xTe snosuslBowioy s8Iyl ‘Al
o] 040 z = A% +x%
mu i U mqm 0o mwn .ﬁm_ O = XY O|>NQ+ T SUMOUMUN OMI UISUOlenbe
0 o %O 0o Oxt Oq * 0=A1+x snosuebowoy Joled |||
02 00z P o0z P
0e § L€ U1 0 §
gP ° %Y mwﬁ ot (g0 9 Y €0=28+ A £+ x5
mm_o 9 49 N@m mﬂm m\m muo q N@m a= XV Z0=2%+ A Q4 xZe| SUMOLUNSBIUISUONENDS
0% % 4 W| O | DO |0b G % =704 Agexl| 1OPEHISIOORDOLOULON I
R
d=XVv 9= AQq+x% SUMOUXUN oM Ulsuoienbs
Ob g =1 | O%O OXO O & b A B e T
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Herewe confineto the abovetypes of systems of equationsin threevariables. Before solving the
systems of equations, wefirst study animportant concept namely therank of a matrix.

3.6.1 Definition (Submatrix)

A matrix obtained by deleting some rows or columns (or both) of a matrix is called a
submatrix of the given matrix.

o1 2 3

_ 0O O

For example, If A= D2 3 1D
E1 2 o5

Then somesubmatricesof A are

01 20
B‘l ZH — obtained by deleting R, and C; of A

L 2 30
& 3 1H — obtained by deleting R, of A
2 30
3 17 . .

U - obtained by deleting C, of A
B2

[0] — obtained by deletingR;, R,, C, and C, of A.
3.6.2 Definition (Rank of amatrix)

Let A be a non-zero matrix. Therank of A is defined as the maximum of the orders of the
non-singular square submatrices of A. The rank of a null matrix is defined as zero. The rank of
a matrix A is denoted by rank (A).

3.6.3 Note

If A isanon-zero matrix of order 3, thentherank of A is

() 1 if every 2 X 2 submatrix issingular

(i) 2 if Alissingular and atleast oneof its2 X 2 submatricesisnon-singular
(i) 3 if Alisnon-singular.

3.6.4 Examples
01 2 1O

_
1L A=g1 0 2
50 1 -1

det A = —5. Aisnon-singular, and hencerank (A) = 3.



2

+1 -2 -3
_ O []
B=33 4 55
H4 5 &
det B =0, Hencerank (B) # 3.
-1 -20

Now H 3 4H isasubmatrix of B, whosedeterminantis?2.

Hencerank (B) = 2.

@1 00 0O

O O

3. C=®1 2 44
© 01 2

C isamatrix of order 3 X 4.
a 0 OO

Let C;= 0 1 25
B 0 15
Then C isasquare submatrix of C of order 3anddet C, = 1.

Hencerank of the given matrix is 3.

3.6.5 Déefinition (Elementary Transfor mations)

The following tranformations are known as elementary transformations on a matrix.
(i) Interchange of two rows (or columns).
(i) Multiplication of elements of a row (or column) by a non-zero number
(ili) Addition to the elements of a row (or a column), the corresponding elements of
another row (or column) multiplied by any non-zero number.

Elementary transformations enable usto transform agiven matrix into triangular matrix. Ina
triangular matrix, the search for the highest order non-singular submatricesiseasier. (Why!) We state
here below a theorem without proof, which enables us to determine the rank of a matrix using
elementary transformations.

3.6.6 Theorem

Elementary transformations on a matrix do not change its rank.

A matrix obtained from agiven matrix by applying afinite number of elementary transformations
(insuccession) issaidto beequivalenttoit. If A and B areequivalent, wewrite A ~ B.

3.6.7 Solved Problems
M1 20

1. Problem:Find the rank of A =H 2 3% using elementary transformations.
0
3 210
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a2 30
: 0 [l
Solution: A ~ ® 1 27(oninterchanging R; and R,)

3 2 19
o 2

~ %) 1 %(On applying R3 - R3-3Ry)

The last matrix is singular and é’) QS is a non-singular submatrix of it. Hence its
10

rank is2. Rank (A) = 2.

0120 -10
2.Problem:Find the rank of A = 53 41 a%using elementary transformations.
42 32 5
0120 -10
Solution: A:B34 1 a%
42 32 5
01 20 -10
R2_>R2—3R1:BO -2 1 5%
H2 32 5

R;— R3+2R; :

Rs - 2R3 +7R, :

o
¢’}

SIS [DHH iR
|
jm

0 R(A) = 3.



Exercise 3(f)
Find therank of each of the following matrices.

1 00 1 0O

.1 %) q% 2. %) 1% 3.
0 10 L 0 -40

4. H q% 5. % 1 % 6.
1 0 0O L 4 -17

1. %) 0 1% 2 % 3 OB 3
010 01 2
11 1% 012 0 -10

s di1w 5 0341 2 6.
H1H H2 3 2 =

LO0g FEOR oR 8

B I a s

]

P w N
My

R O
w N -
Ca

3.6.8 Definition (Consistent and Inconsistent systems)

3

We say that a system of linear equations is

(i) consistent if it has a solution.
(if) inconsistent if it has no solution.

6.9 Solutions of nonhomogeneous system of equations

We consider solving thefollowing system of 3 equationsin 3 unknowns

X+ y+cz=0d
aX+b, y+c,z=d,
agX+byy+cyz=dy

Thissystem can be represented by amatrix equation AX =

Ea_[ by °1E|
A= [@2 b, 02[| is the coefficient matrix,

%3 % %Ehx3

(X
a

DE isthevariable matrix,

[bﬂ

X =

D where
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0,0
0o .
D = 0 isthe constant matrix,

e

@y b ¢ d0
O O
[AD]=[@ b, ¢, d istheaugmented matrix.
O O
@ by c3 da
We state here atheorem without proof, which indicates the nature of solutions of the system.
3.6.10 Theorem

The system of three equations in three unknowns AX = D has

(i) aunique solutionif rank (A) = rank ([A D]) = 3.

(i) infinitely many solutionsif rank (A) = rank ([A D]) < 3.

(il1) nosolutionifrank (A) # rank ([A D]).

Notethat the systemisconsistent if and only if rank (A) =rank ([A D]).

Themethod of solving the equationsisillustrated in thefollowing example.
3.6.11 Example

Show that the system of equations given below is not consistent.

2x+6y =-11
6x+20y -6z = -3
6y-18z = -1
Solution: Thegiven system of equations can bewrittenintheform
AX =D, where
@2 6 0 0x3 O0-11
A= 20 -6 X=py, D=g B
B 6-18 HY HH
Consider the augmented matrix
@2 6 0 -11O
[AD]= % 20 -6 -3
B 6 -18 -1

Onapplying R, - R, —3R;, we get

@6 0 -110
[AD]- b 2 -6 3
0 6 -18 -



Onapplying R; - R3—-3R,, weget
@2 6 0 -113

[AD]- D 2 -6 307

Mo 0 -9H

Now rank of [A D] = 3, sincethe 3 X 3 submatrix

isnon - singular (itsdeterminantis —91 (6) (-6) # 0)
But therank of the coefficient matrix isnot 3 because
2 6 0J
det 0 2 -67=0
0o o
O rank of (A) # rank ([AD]).
Hencethegiven system is inconsistent.
3.6.12 Why do we use only elementary row transfor mations?
L et usapply elementary column transformationsto the augmented matrix of example 3.6.11.

@2 6 0 -113
[AD]- % 20 -6 -
B 6 -18 -H
Onapplying C, - C, —-3C;, we get
@2 0 0 -117
[AD]- 3 2 6 -
06 -18 -H
Onapplying C; - C;-3C,, and C3 - C35+3C,,we get
0200 -110
[AD]- g 020 -&
H18 6 0 -H
Now we can easily observethat the rank of the coefficient matrix is # 3, as
B 2 0 0O

002 OS issingular.

H18 6 OH
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Therank of the augmented matrix is 3, sincethe sub matrix
O 2 0 -110
g 02 —% isnon-singular.
Hi18 6 -H

(determinant 2(—2 +18) —11(36) =32 -11 x36 %0).

Hencerank (A) # rank ([A D]) Hencethe system isinconsistent.

Thus, we can use either row transformations or column transformationsto find whether asystemis
consistent or inconsi stent.

But, if werequirethe solution of the system also, then elementary row transformation only are
useful, as seen by thefollowing discussion.

Each row of the augmented matrix correspondsto an equation of the system.
Intheexample3.6.11.

Istrow : 2 6 0 -11 correspondsto thefirst equation 2x+6y = -11.
2ndrow: 6 20 - 6 - 3 correspondsto the second equation 6x+ 20y —6z=-3.
3rdrow: 0 6 -18 - 1 correspondsto thethird equation 6y —18z=-1.

Thefollowing arethe effects of elementary row transformations on the equations.

Sl. No. | Elementary row operation Effect on theequations

1 Inter change of tworowssay R, andR,. | Thefirst equationisnumbered
as2 and the second equationis
numbered as 1.

2. Multiplying the elementsof thei-th row i-th equationismultiplied by k.
with anon-zero number k.

3. Theelementsof the i-th row areadded | the j-thequationismultiplied
with ktimes corresponding el ements with k and added to thei-th
of the j-th row (i #j). equation.

The effect of the elementary row transformation on the equationsis nothing but the stepsthat we
employ for solving the equationsunder traditional elimination process. Assuch, we can, at any stage of
the problem, write an equivaent system of equationsfrom the augmented matrix. Butif weusee ementary
column transformationswe may not obtain an equivalent set of equations.

Hence, if we use Elementary row transformations, we can

(1) decidewhether the systemisconsistent or not and also

(i) writethe solution of the system, if itisconsistent.

Thisisillustrated in the following solved problems.



3.6.13 Solved Problems

1. Problem: Apply the test of rank to examine whether the following equations are consistent.

2Xx-y+3z=8
-X+2y+z =4
3x+y—-4z =0,
and if consistent, find the complete solution.
Solution : Theaugmented matrix is

02 -1 3 8]
[AD]:Erlz 14,'%
H3 1 -4 (H
G1 2 14

~ 82 -1 3 é% (oninterchanging R; andR5)

H3 1 -4 (H
we transform the above matrix into an upper triangular matrix.

F12 1 4
~00 3 5 167 (onapplyingR, ~ R, +2Ry,Ry - Ry +3Ry)

Ho 7 -1 14

Fl12 1 40
O :
~g0 3 5 1(% (onapplying Rz - 3R3-7R5)

Ho 0 -38 -76H
12 1O
Now det 50 3 57=(-1)(3)(-38) =114.
Ho 0 -38H
Hencerank (A) = rank ([AD]) =3.
U By the Theorem of 3.6.10, The system hasaunique solution.
Wewritetheequivalent system of equationsfrom (F), i.e.,
-X+2y+z =4
3y+5z =16
-38z= -76
O z 2, 2,% 2isthesolution.

. (F)
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2. Problem: Show that the following system of equations is consistent and solve it completely:
X+y+2z=3
2x+2y—-2z=3
X+y-z=1
Solution: The given equationsare equivalent to the equation AX =D, where
1 1O 0xJ

03

A= 2 1, X=0y ad D=03
H1-1H Hy HE
M1 13

Augmented matrix [AD] = % 2 -1 %

H 1-11H

Onapplying R, - R, - 2R;{,R3 - R3 —R; weget

-0 -3 -3 ()

Clearly all the submatrices of order 3 of the abovematrix aresingular.
Hencerank (A) #3, and rank ([AD])#3

M 10
Now the non-singular matrix %) _ %isasubmatrix

of both A and [A D]. Hencerank (A) =rank ([AD]) =2.
Henceby Theorem 3.6.10(ii), the system is consistent and hasinfinitely many solutions.
We now writethe equivalent set of equationsfrom (F).
X+y+2z=3
-3z=-3
Hence z=1,x+y=2.
Hence x =Kk, y =2 -k, z=1, k O R isthe solution set.



Exercise 3 ()

I Examine whether the following systems of equations are consistent or inconsistent and if

consistent find the complete solutions.
2.

1. X+y+z=4
2x+5y—-2z=3
X+7y—-7z2=5

3. X+y+z=1
2X+y+z=2
X+2y+2z=1

5 X+y+z=6
X+2y+3z=10
X+2y+4z =1

7. 2x+3y+z=9
X+2y+3z2=6
3X+y+2z=8

X+y+z=6
X—y+z=2
2Xx-y+3z=9
X+y+z=9
2X+5y+7z =52
2x+y-z=0
Xx=3y—-8z=-10
3x+y-4z=0
2X+5y +6z =13
X+y+4z=6
3X+2y-2z=9
S5x+y+2z=13

3.7 Solution of SimultaneousLinear Equations

In this section we discuss some methods of solving systemsof simultaneous linear equations.

3.7.1. Cramer'sRule

Consider the system of equations

yxX+by+cz=d
aXx+hy+c,z=d,
agX + b3y +C3z=d;3

[y b cO

where A = %\2 b, CZB isnon-singular.

Hg by G

(X

[0 O

Let X = Eyg be the solution of the equation AX =D, where D = %128

FeH
a

B¢
Let A = |a, b, ©
by G

a3

HisH



ax b o
ThenxA = | ayx b, ©
X by G
On applying C; - C; +yC, +zC; we get

A d b g
0 x Klwherdsf d, b, ¢
d3 by ¢

Smilarly weget
a d g

ax+hy+cz b ¢ |d b ¢
XA = |ayx+byy+cz by, ¢ =|d, b, ¢
BXthyy+czz by 3 |d3 by ¢

& b g

y=K2, where A, = |a, d, C,| and Z=%’ where Ay =@, b, d

a3 d3 G
X_ Yy z_ 1

3 by d3

A D, A K.Th|S|sknownasCramer'sRuIe.

3.7.2. Matrix inversion method

Consider the matrix equation AX =D, where A isnon-singular. Then we canfind AL,

AX =D = AY(AX)=AlD
- (AA) x=A"D

< IX=A"1D (listheunit matrix).

- X=A"'D
Fromthis x, y and z are known.

3.7.3 Solved Problems

1. Problem: Solve the following simultaneous linear equations by using Cramer's rule.

3x+4y+5z =18
2x-y+8z=13

5x—-2y+7z2=20
Solution:

B 450 0K
LetA= 2 -1 85 X=0y and D=

B -27H HH

018
013
LS
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Then we can writethe given equationsin theform of matrix equationas AX = D.

3 45
A= detA=|2 -18
5 -2 7
-18] [28] |2 -1
= 3 -4 +5
27 |57 |5 -2

= 3(—7 +16) —4(14 —40) +5( 4 +5)
= 27+104+5=136 #0.

Hence we can solvethe given equation by using Cramer'srule.
18 4 5

A =|13 -1 8| = 408
20 2 7

318 5
A,=|2 13 8| =136
20 7

4 18

-1 13| =136.
5 -2 20

N W o

Hence by Cramer'srule,
A, 408 _3 A, 136 and Z_A3 136 _

A 13 YA 13 A 136
[0 The solution of the given system of equationsisx 3, ¥ ¥ z.

2. Problem : Solve 3x+4y+5z=18;2x -y +8z =13 and 5x -2y +7z =220 by using 'Matrix
inversion method'.

Solution:

B 4 50 LIX1 018

LetA= 2 -1 85 X =0y, ad D=01d .
5274 B Ha

Thenwe canwritethegiven equationsintheform AX =D.

B 4 50

A = 2 -1 87=136%0.
5 -2 75

Hencewe can solvethe given equations by ‘Matrix inversion method'.
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09 -38 370
WehaveAdj A= 26 -4 -147.
H1 26 -11H
From matrix inversion method,
09 -38 370011181 OB

_ AdjA 1 0,0 O
X=AD="22 D= — 26 -4 401F T
D= T Bd

H1 26 -1155201 He

O x 3, ¥ land z=1 isthesolutionof thegiven system of equations.

Note

Observethat Cramer's Rule and Matrix inversion method can be applied only when the coefficient
matrix A isnon-singular. The Gauss-Jordan method givenin 3.7.4 below can be applied even otherwise,
asin3.6.13.

3.7.4 Gauss- Jordan method

In thismethod wetry to transform the augmented matrix
E]E_L by ¢ dlg
e b G dyf
s by ¢ ds
@1 00 a0

O
totheform %) 10 Ag . (F)
H 01 yQ
by using elementary row transformations, so that the solution is completely visible that is

x=a, y=8, x=y. Wemay getinfinitely many solutions or no solution also according to theform of the

transformed matrix (F). Infact, thismethod isan extension of the method already discussedin 3.6.12.
Thefollowing solved problems(3.7.6) illustrate the method.

3.7.5 Note

For solving a system of three linear equations in three unknowns by Gauss-Jordan method,
elementary row operations are performed on the augmented matrix asindicated bel ow.

Step 1

(i) Transformtheeementin (1,1) positionto 1, by asuitable elementary row transformation using the
element at (2,1) or (3,1) position or other wise.

(i1) Transformthenon-zero elements, if any at (2,1) or (3,1) positions as zeros (other el ements of the
first column) by using theelement 1 at (1,1) position.

If, at theend of step 1, thereisanon-zero element at (2,2) or (3,2) position, goto step 2. Otherwise
Kipit.



Step 2
(i) Transformtheelementin(2,2) positionto 1, by asuitable elementary row transformation using the
element at (3,2) position or other wise.

(i) Transformthe non-zero elements, if any, of the second column (i.e., the non-zero e ements,if any, at
(1,2) or (3, 2) positions) as zeros, by using theelement 1 at (2,2) position.

Attheend of step 2, or after skipping it for reasons specified above, examinetheelement at (3,3)
position. If itisnon zero, goto step 3. Otherwise, stop.

Step 3

(i) Transformtheelement in (3, 3) positionto 1, by dividing R, with asuitable number.

(i) Transform the other non-zero elements if any of the third column (that is, the non-zero
elements, if any, at (1,3) or (2, 3) positions) as zeros, by using the 1 present at (3,3)
position.

3.7.6 Solved Problems

1. Problem : Solve the following equations by Gauss - Jordan method
3x+4y+5z =18

2x—-y+8z =13
5x—-2y+7z=20-
Solution : Theaugmented matrix is

M 5 -3 4]

- 1114 F
B -27 2 5

On applying R, — —5R, +2R3, we get
m 5 3

-3 5]
~%) 1 -26 —2%

M 27 2 -5
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OnapplyingR; - R; =5R,,R3 - R3;+27R,, weobtain
M o0 127 1301
-~ 1 -126 -2
M 0 —680 -680H
On applying R3 — R3+(-680), we get
1 0 127 1301

~§)1—26 —25%
o 1 N

Onapplying R; - R; -127 R3,R, - R, +26R5, we get
00 X
%104
®01H
Hencethesolutionis x=3, y=1, z=1.
2. Problem : Solve the following system of equations by Gauss - Jordan method
X+y+2z=3 2Xx+2y —z=3,x +y -z 1.
Solution : Thematrix equationis AX =D, where
o 1 10 0xJ 03
A= 2 -1 X3y adDTd
A 1-8 B8 Al
Theaugmented matrix is
M1 1 3
[AD] = % 2 1 3
1 -1 19
OnapplyingR, - R, —2R;,R; - R3—R;, weget



Hencethefollowing isthe system of equations equivalent to the given system of equations.
X+y+z=3

-3z = 3.
Hence z=1,x+y=2.
[0 The solution set is
x=k, y=2-k, z=1, wherek OR.
3. Problem : By using Gauss-Jordan method, show that the following system has no solution
2X+4y-z=0, x +2y +2z =5, 3x+6y-7z=2.

Solution : Theegquivalent matrix equationisAX =D, where
2 4 -10 Oxd 0@
A=l 2 23 X=py ad DHF .
B 6 -70 Epa Bi
Theaugmented matrix is
@2 4 -1 OO

[AD]=pL 2 2 5
B 6 -7 X
Oninterchanging R; and R, we get

Onapplying R, — R, —2R{,R3 - R3 -3R;, weget
m 2 2 ]
-~ 0 -5 -
M 0 -13 13

On applying R, - R, +(-5), R3 - Rz +(-13), we get
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Hencethe given system of equationsisequivalent to thefollowing system of equations
X+2y+2z=5 z=2,0(x) +0(y) +0(z) =-1.
Clearly no x,y, zsatisfy thelast equation in the above system.
Hencethe given system hasno solution.

Exercise 3 (h)

. Solvethefollowing systems of equations.
(1) by using Cramer'sruleand Matrix inversion method, when the coefficient matrix isnon-singular.

(i) by using Gauss-Jordan method. Also determine whether the system has a unique solution or
infinite number of solutionsor no solution and find the solutionsif exist.

1. 5x-6y+4z=15 2. X+y+z=1
7x+4y -32=19 2X+2y+32=6
2X+Yy +62=46 X+4y+9z=3

3. X-y+3z=5 4. 2x+6y+11=0
4x+2y-2=0 6x+20y -6z2+3=0
-X+3y+z=5 6y—-18z+1=0

5  2x-y+3z=9 6. 2x-y+8z=13
X+y+2z=6 3x+4y+5z=18
X—y+z=2 5x-2y+7z=20

7. 2x-y+3z=8 8. x+y+z=9
-X+2y+z=4 2X+5y +7z2=52
3x+y-4z=0 2x+y—-z=0

3.7.7 Solution of a homogeneous system of linear equations

We consider thefoll owing homogeneouslinear equations
aXx+hy+cz =0
axX+tby+c,z=0
agX+bsy +C;2 =0 -
The equivalent matrix equation of the above systemis AX = Owhere
Eal by C:LB X0 0o
A= b, cp,X=Fgad O =0
%o by H B gt



Clearly the coefficient matrix A and the augmented matrix havethe samerank, for they differ by a
column of zeros. Thusasystem of homogeneous equationsisawaysconsistent. Infact, x=y=z=0

isawaysasolution. Wecal thisthetrivial solution. Wearehowever, interested in finding whether or not
therearenontrivial solutions.

We state bel ow atheorem without proof, which indicatesthe nature of solutions of the system.

3.7.8 Theorem

The system of equations AX = O has
() thetrivial solution only, if rank (A) is3
(i) an infinite number of solutions if rank (A) is less than 3.

Themethod of solving asystem of homogeneouslinear equationsissimilar to that adopted onthe
examplesgivenin 3.6.13. However, some problemsare solved here under.

3.7.9 Solved Problems

1. Problem: Find the non-trivial solutions, if any, for the following system of equations.
2x+5y+6z =0

x—-3y+8z =0
3x+y-4z =0-
@2 5 &7
Solution: The coefficient matrix A = E]l -3 —q%.

B 1 -4

Oninterchanging R; and R, we get
M -3 -8
A~z 5 6
B 1 -4
OnapplyingR, - R, - 2Ry, R3 - R3 -3R;, weget
M -3 -8
A~ 11 22,
B 10 20

On applyingR, - R, — R3, weget

M -3 -8]
A-B 1 2,
B 10 20H
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On applying R; - R3+ 10, we get

m -3 -]
A’H) 1 ZE o (F)
B 1 A

det A=0asR,and R areidentical.

Clearly rank (A) = 2, asthe sub matrix % % isnon- singular.

Hencethe system hasnon-trivial solution.
Writing back the equationsfrom (F)
x-3y-8z=0
y+2z=0
Ongiving an arbitrary valuek to z, we obtain the solution set as

x=2k, y=-2k, z =k, kOR. For k# 0 wegetnon-trivial solutions.

2. Problem: Find whether the following system of linear homogeneous equations has a non-trivial

solution.

X-y+z=0

X+2y-z=0

2x+y+3z2=0
-1 1

Solution: The coefficient matrix is %1 2 —JE.

? 1

[tsdeterminantis 9. Hencethesystem hasthetrivial solution x=y=2z=0 only.

Exercise 3 (i)

Solvethefollowing systemsof homogeneousequations.

1. 2x+3y-z=0 2. 3x+y-2z=0
X-y-2z=0 X+y+z=0
3X+y+3z=0 X—-2y+z=0

3. x+y-2z=0 4. x+y-z=0
2x+y-3z=0 X—2y+z=0

5x+4y-9z=0 3x+6y-5z=0



Key Concepts

O

O

An mx n matrix A isrepresentedas A = [&; Iy -

A matrix iscalled squarematrix if itsnumber of rowsequal snumber of columns.

Anedement &; isinprincipa diagond if i = j.

Thesum of theelementsof the Principal diagonal iscalled Trace of the matrix.

A squarematrixiscalleda

(i) Diagona matrix if each non-diagona eementiszero.

(i) Scalar matrix if each non-diagona element iszero and every diagonal element isequal to
somescalar k.

(i) - Unit matrix or Identity matrix if each non-diagonal € ement iszero and each diagond eement
isequal to 1.

If A = [&]mxn @dB = [b]mxn then A + B = [Gj]mx«n Where ¢; = g; + by
If A =[aj]lnxn and k isascalar, then kKA =[kajj]mxn -

n
If A =[a]mxn and B =[b]hxp then AB =[]y« p Where G; = Z 3k by -
k=1

Thematrix obtained by interchanging rowsand columnsiscalled Transpose of the given matrix.
Transposeof A isdenotedby A'or AT,

A matrixiscalled

(i) Symmetricif A'=A

(i) Skew-symmetric if A'= —A.

A matrix obtained by del eting somerowsor columns (or both) of amatrix iscalled asubmatrix of

thegiven matrix.

Let A bea 3 x 3matrix. Then

(i) Theminor of an element isthe determinant of the2 X 2 sub matrix obtained by deleting the
row and columninwhichtheelement ispresent o

(il) thecofactor of anelement &; istheproduct of itsminor and (-1)"*!

(iii) thedeterminant of A isthe sum of the products of the elementsof any row (or column)
with the corresponding cofactors.

A squarematrix issaidto be
(i) sngulerif itsdeterminant iszero

(i) non-singular otherwise.
Adjoint of asquare matrix A (order >1) isthetranspose of the matrix formed by replacing the
elementsby cofactors.
Let A beasguarematrix. A matrix B, if exists, suchthat AB =BA =1 iscdledtheinverseof
A andisdenotedby A™%

'
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ey
[J Therank of anon-zero matrix A isdefined asthe maximum of the order of the non-singular

square submatricesof A. Therank of anull matrix isdefined aszero. Therank of amatrix A is
denoted asrank (A). Inparticular, If Aisa3 X 3matrix, thenitsrankis

(i) 3if A isnon-singular
(i) 2if A issingular and atleast oneof its2 X 2 sub matricesisnon-singular
(i) 1if every 2 X 2submatrix issingular.
[ Thefollowingtransformationsareknown aselementary transformationson amatrix.
(i) Interchangeof two rows(or columns)
(i) Multiplication of theelementsof arow (or column) by anon-zero number
(i) - Additionto theelementsof arow (or acolumn), thecorresponding e ementsof another row
(or column) multiplied by any number.

[  Elementary transformationson amatrix do not changeitsrank.

[J A systemof linear equationsis
(i) consstentif it hasasolution
(if) incongstentif it hasno solution.
[J  Non-homogeneoussystem
ax+b y+cgz=d
x+b, y+cz=d,
agX+by y +cyz=d;3
Theabove system of equationshas
(1) auniquesolutionif rank (A)=rank ([A D])=3
(i) infinitely many solutionsif rank (A) =rank (A D]) <3.
(i) nosolutionif rank (A) # rank ([A D]).
[ Homogeneous system of equations
ayX+b y+cz=0
aX+b, y+c,z=0
agx+byy +C42=0 .
Theabove system has
(1) Trivia solution x=y=2z=0 onlyifrank (A)=3

(i) infinitely many non-trivia solutionsif rank (A) < 3.




Historical Note

The history of matrices and determinants goes back to the second century B.C. athough traces
can be seen asearly asthefourth century B.C. However it wasnot until near the end of the 17t
century that theideas reappeared and devel opment really got underway.

Itisnot surprising that the beginnings of matricesand determinants should arisethrough the study
of systemsof linear equations. The Babylonians studied the problemswhich led to simultaneous
linear equations and some of these are preserved in clay tabletswhich still survive. The Chinese,
between 200 B.C. and 100 B.C. came much closer to matrices than the Babylonians. The text
Nine Chapters of the Mathematical Art (Chiu Chang Suan Shu) written during the Han
dynasty givesthefirst known example of matrix methodsto solve simultaneous equations.

The rectangular arrangements of certain numbersin some rows and columns was named as
"Matrix" by J.J. Sylvester in 1850. Arthur Cayley (1821-1895), an English mathematician, isalso
known for his matrix representation of simultaneousequations.

Sincetheir first appearancein ancient China, Matrices have remained asimportant mathemati cal
tools. Matrix theory isused asan indispensibletool inthestudy of Physical Sciences, Engineering,
Statistics, Economics, Sociology etc. Today they are used, not simply for solving systems of
simultaneous linear equations, but aso for describing Quantum mechanicsof atomic structure,
designing computer game graphics, analysing relationships and even plotting complicated
dance steps!

Theelevation of the knowledge of matrix from ameretool to an important mathematical theory
owesalot to thework of alady mathematician, Olga Taussky Todd (1906-1995), who began by
using matricesto analysevibrations on airplanes during World War |1 and becamethetorch bearer
for matix theory.

Matrices areindispensablein some applications and model sin other branches of mathematics.
Some of the varioustypes of matricesare Symmetric, Hermitian, Triangular, Diagonal, Tridiagonal,
Band-centro symmetric, Toeplitz, Positive definite Hessian, Circulant and so on.....

Answers

Exercise 3(a)
o F1 A
L0213 () oo iy § %24 vy go -
34 92 i g

F2 -3 100

2. %=1 X=4,% =7, X, =-3 3 82 1 ﬁ%

45 1 B



l. 1.

2.
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0 1 -1
X=rh 1 & 5. x=8,y=52=-4, a=10
5 2
X=2,y=2,z2=5 a=5 2.1
L1 1056 T
0D

07 2 -3
2 2 45,08 7 1 4.
Ij' —40 % 53275

Exercise 3(b)
. . 3
() [9] (ii) %
iy B8 11 iv) |
46 29
(v) Notpossible (vi) Notpossble (vii) O,,, (viii) Og, 5
0 F10 2 210
AB adBA e AB= () ], BA= 516 2 373 A andB arenot commutative.
H-2 =2 115
4 100 , Ol
O, O
5 -1 do -4

Y 4 4
AB—% ZE BA doesnot exist. 7. -2

4
1. A*=(3)*=81l 2. 0,4 3. Oy,

I 4A-§3§B—DOE
S 4 A= B=g

4,

(Thisisjust oneexample satisfying the given conditions)
5. (&) 15,000 and 15,000 (b) 5,000 and 25,000.

Exercise 3(c)
[+6 6D D—4 10
G2 20 04 -900 20 22
Ho - 2 o3 o ‘g 359 0o 3k
H1 105 E 4
6 5 2 6. Skew-symmetric



05 15 50 512 24
0 0
1,200 20 -85 3 50 0

H9 -23 -15

Exercise 3(d)
1.1 () -1 (i) 38 (i) 1
(viii) abc +2fgh —af 2 —bg? —ch?
(ix) 3abc-a®-b*-c* (x) -8
1. 6.a,b,c,
Exercise 3(e)
01 10
. 6 0,4 gl . Ocosa
1. () B 3],D4 89 (i) g .
T4 2% o1l 10 sina
He 120
01 4—2]151 4 -2 F2 3
(i) 72 5 4p2 5§ ) gL -2
H1 -2 15%1—2@ H2 -2
] | F9 -8 -
2 Ba_'d ey 3 08 7
i a+ibg ds5 -4
O
£ o
1 2 20 gj‘ .
10 =
4 g% 1 - 5. EO b
H2 2 H -
0 0
Exercise 3(f)

- 012 0

43
B 5240 26

H13 26 5HH 7 1 5

|
FToofoo AN ﬁé’mﬁ

OlF
o Oa.;

(iv) 2 (v) -108 (vi) 37

2. 7

snad O cosa
0 .
cosa[] [J-shna

|
N

3 0
-2

-2 _E

mnm]n
N e

sinaf]
]
cosar]

(i)
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Exercise 3(Q)

Inconsistent, no solution.

2. Consistent; Uniquesolution; x=1,y=2, z=3.

3. Conggent; Infinitdly many solutions;

N o g s

A W DN P

© N o g ~ w N PF

solutionsset ={ (x,y,2): x=1,y+z=0}.
Consistent; Uniquesolution; x=1,y=3, z=5.
Consistent; Uniquesolution; x=-7,y=22, z=-9.

Consistent; Infinitely many solutions; x=-1+2k, y=3-2k, z=k; kisascaar.

Consigtent; Uni | uti 'X=§ y=§ Z=£
nsistent; Uniquesolution ; 18" Y 18" “"18
1

Consigtent; Uniquesolution; X =2, y=2, Z=§.

Exercise 3(h)
x=3,y=4, z=6; Unique solution
x=7,y= =10, z=4; Uniquesolution
x=0,y=1, z=2; Uniquesolution
Nosolution
x=1,y=2, z=3; Uniquesolution
x=3,y=1, z=1; Uniquesolution
x=y=z=2; Uniquesolution

x=1,y=3, z=5; Uniquesolution

Exercise 3(i)
x=y=z=0
Xx=y=z=0
x=y=2z=k for any real number k

x=k, y=2k, z=23k for any real number k
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Chapter 4

Additicn of Vectors

“\ectors are not merely a pretty toy suitable only for
elegant proof of general theorems, but are a powerful
weapon of work away on mathematical investigation,
both in research and in solving problems’

— Chapman

I ntroduction

In our day to day life we come across many queries
such as- What isyour height? How should afoot ball player
hit theball, to give apassto one another player of histeam?
Observe that one possible answer to the first query is 1.7
meters, aquantity that specifiesava ue (magnitude) whichis
area number. Such quantitiesare called scalars. However,
the answer to the second query isaquantity (called force)
whichinvolvesmuscular srength (megnitude) and asodirection
(inwhich another player ispositioned). Such quantitiesare
caledvectors. InPhysics, Engineering and Mathematics, we
frequently comeacrosswith both typesof quantities, namely
scalar quantitiessuch aslength, mass, volume, temperature,
dengity, area, work, resistance etc. and vector quantitieslike
displacement, vel ocity, accel eration, force, weight, momentum
etc.

Josiah Willard Gibbs
(1839 - 1903)

Gibbs was a prominent
American engineer and
promoter of vector analysis,
which established itself as a
more easily applied subject
compared to Hamilton's
guaternions or Grassmann’s
Calculus of extensions.
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Vector methods have revol utionised M echanics, Engineering, Physicsand Mathematics. ReneDescarte
(1596-1660), after whom the Cartesian coordinate systemisnamed, G.W. Leibnitz (1646-1716), afamous
mathematician of 17th century and R.Hamilton (1805-1865), awell known theoretical physicist arethetrio
who laid the seedsto thisbranch of Mathematics. J.W. Gibb’s(1839-1903) work on vector analysiswas of
major importancein Mathematics.

Inthischapter, wewill study some of the basic concepts about vectors, various operations on vectors
and their agebraic and geometric properties. Angle between two non-zero vectors, linear combination of
vectors, vector equationsof lineand planearediscussed to giveafull realisation of theapplicability of vectors
invariousareasas mentioned above.

4.1 Vectorsasatriad of real numbers, some basic concepts

Let | beany straight lineinaplaneor threedimensiona space. Thisline can begiventwo directionsby
meansof arrow heads. A linewith oneof thesedirectionsprescribed, iscalled adirected line(Fig. 4.1).

]

- ]

T

[
i H
]
A '
A i
] /
H i
J i
. [}
h ]

!

" Fig. 41

4.1.1 Definition : (Directed line segment)

If Aand B are two distinct pointsin the space, the ordered pair (A, B), denoted by ABis called
a directed line segment with initial point A and terminal point B.

Themagnitudeof AB, denoted by |AB|=a(say), isthelength of AB or the distance between A and B
(Fig.4.2). /
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4.1.2 Definition

A line segment with a specified magnitude and direction is called a vector.

Noticethat thedirected line sesgment in Fig. 4.2 isavector denoted by AB or AB or simply asaand
read asvector AB or vector a. Thearrow indicatesthedirection of thevector. When A # B, wesay that the

line AB isthesupportof AB.

The zer o vector, denoted by 0, isthe collection of PP, where Pisany point in the space. Thezero
vector, also known asthe null vector, hasneither support nor any specific direction. Observethat, for the
zero vector, theinitial andterminal pointscoincide and itsmagnitudeisthescalar O.

Let a, band c bereal numbers(not necessarily distinct). A setformedwitha, b, cinwhichtheorder
of occuranceisalso preassignediscalled an ordered triad or atriple. If a b, caredistinct reals, thenwe
get six ordered triads, namely (a, b, ¢), (b, ¢, a), (c, a, b) etc. For theorderedtraid (a, b, ¢), a, b, carecalled
thefirst, thesecond and thethir d componentsrespectively.

Theset of all ordered triads (a, b, c) of real numbersisdenoted by R 3. Thisrepresentationwill be
used inrectangular coordinate systemin section 4.7.2.

4.1.3 Position Vector

Consider athree- dimensional rectangular coordinate system OX, QY, OZ and apoint Pinthe space
having coordinates (X, y, 2) with respect to theorigin O(0, 0, 0) asshownin Fig. 4.3(a). Thenthevector OP
having O and Pasitsinitial and terminal pointsrespectively, iscalled the position vector of thepoint Pwith
respect to O. Thisisdenoted by r. Then the magnitude of OP, using the distance formula, is given by

|OP| =|r|=yX2+y* +2*.

It is customary that the position vector of a point A, with respect to the origin O is denoted by a
(Fig. 4.3(b)).

Z

N
- 7'

Fig. 4.3(a) Fig. 4.3(b)
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4.1.4 Direction cosines and Direction ratios

Consider theposition vector OP =r of apoint P(x,y, z). Leta, 3, y betheanglesmade by thevector
r withthe positivedirection (counter clockwisedirection) of X, Y, Z axesrespectively. Thencosa, cos3
and cosy are called the direction cosines of the vector r. Thesedirection cosinesare usually denoted by
[, m, nrespectively.

ZA
f = K
e S o e
7 ~ - 7 !
F-g----- - Sap
1 - 1N
|~
1 -’ 1
e
1 o ’/ y 1
1 7 ]
7
1 1
A¥_ o oo - >

Fig. 4.4

Draw perpendicularsfromPtothe X, Y and Z axesandlet A, B, C bethefeet of the perpendiculars
respectively (SeeFig. 4.4).

From Fig. 4.4, we observethat AOAPisright angled and hence cosa =

r=r Similarly fromthe

y

right angled triangles OBP and OCP, we may write cosf3 = v and cosy = ?Z . Thusthecoordinatesx, y, z

of the point Pmay a so be expressed as(Ir, mr, nr). Thenumbersir, nr, nr which are proportiona tothe
direction cosinesl, m, narecalledthedirection ratiosof thevector r. Theseare usually denoted by a, b, ¢

respectively.
Weobserve herethat

2 =x2+y2+ 2

12r2 + mPr? + nr2

r2(1%2 + m? + n?)

sothat 12+ m?+n2=1buta?+b%+c? # lingeneral.
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4.2 Classification (Types) of vectors

4.2.1Definition (Unit vector)

A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. It isrepresented by e.
The unit vector in the direction of a given vector a is usually denoted by a.

4.2.2D¢finition (Equal vectors)

Two vectorsaand b are said to be equal and written asa = b, if they have the same magnitude
and direction, regardless of the positions of their initial points.

4.2.3D¢finition (Collinear vectors, like and unlike vectors)

Two or more vectors are said to be collinear if they are parallel to the same line, irrespective
of their magnitudes and direction. Such vectors have the same support or parallel support.

Two vectorsare called like or unlike vectors according asthey have the samedirection or opposite
direction. Inthefollowingfigure (Fig. 4.5) aand b arelikevectors, whereas a and ¢ areunlikevectors.

Fig. 45

4.2.4 Negative of a vector

Let abeavector. Thevector having the samemagnitude asa but having the oppositedirectioniscalled
the negative vector of a and isdenoted by —a. Notethat if a=AB then —a=BA.

a
&

—a
=1
Fig. 4.6

Note: Co-initial vectors: Two or morevectorshaving thesameinitial point arecalled co-initial vectors.

4.2.5D¢finition (Coplanar vectors)

\ectorswhose supportsarein the same plane or parallel to the sameplaneare called coplanar
vectors. Vectors which are not coplanar are called non-coplanar vectors.




Mathematics- | A

Notethat thevectorsa=PA, b = PB and c = PC arecoplanar vectorsif and only if thefour pointsP,
A, B, Clieinthesame plane. Coplanarity or non coplanarity of vectorsarisesonly when therearethreeor
more non-zero vectors, since any two vectorsare always coplanar.

4.3 Sum (Addition) of vectors

Weshd |l now introducethe concept of addition (sum) of vectors, derivethecommutativelaw, asociative
law and afew other properties.

4.3.1 Triangle law of vector addition

A vector AB smply meansthe displacement from apoint
A tothepoint B aongtheline AB. Now consider asituation
that a person moves from A to B and then from B to C
(Fig. 4.7). The net displacement made by the person from
point A tothe point C, isgiven by thevector AC and expressed
as

AC=AB+BC

Thisisknown asthetrianglelaw of vector addition. Fig. 4.7

Ingenerd, if wehavetwo vectorsaand b (Fig. 4.8(i)), thento add them, they are positioned, sothat

theinitial point of onecoincideswith thetermina point of theother (Fig. 4.8(ii)). c

! - II)
||_| = II.I k h

0] (ii)

For example, inFig. 4.8(ii), we have shifted vector b without changing its magnitude and direction, so
that it’sinitial point coincideswiththetermina point of a. Then, thevector a+ b, represented by thethird
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side AC of thetriangle ABC, gives usthe sum (or resultant) of thevectorsaand bi.e., intriangle ABC
(Fig. 4.8(ii)), wehave
AB+BC=AC
Now, againsince AC =—CA, from the above equation, we have
AB+BC+CA=AA=0.
Thismeansthat whenthesidesof atrianglearetakenin order, it leadsto zero resultant astheinitia and
terminal pointsget coincided (Fig. 4.8(iii)).
Now, construct the vector B C' so that its magnitude isthe same asthe vector BC, in the direction
oppositetothat of it (Fig. 4.8(iii)), i.e., BC' =-BC.

Then, on gpplyingtrianglelaw, fromFig. 4.8(iii), wehave
AC' =AB+ BC' =AB+(-BC)=a-h.

Thevector AC' issaidto represent the difference of aand b.
4.3.2 Parallelogram law of vector addition

Now, consider aboat in ariver going from one bank of
theriver tothe other in adirection perpendicular to theflow
of theriver. Then, itisacted upon by two velocity vectors-
oneisthevelocity imparted to the boat by itsengineand the
other istheveocity of the flow of river water. Under the
smultaneousinfluenceof thesetwo vel ocities, theboat actualy
startstravellingwith adifferent velocity. To haveaprecise
ideaabout the effective speed and direction (i.e., theresultant
velocity) of the boat, we have the following law of vector _
addition. Fig. 4.9

If we havetwo vectorsa and b represented by the two adjacent sidesof aparallelogram in magnitude
anddirection (Fig. 4.9), thentheir sum a + b isrepresented in magnitude and direction by thediagonal of the
parallelogram through their common point. Thisisknown asthe parallelogram law of vector addition.

Note: FromFig. 4.9, using thetrianglelaw, one may notethat
OA+AC=0C
or OA +0OB=0C (sinceAC=0B)

whichisparalelogramlaw. Thus, wemay say that thetwo lawsof vector addition are equivalent to
each other.
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4.3.3 Properties of vector addition

1. Property : For any two vectorsaand b,
a+ b=Db+ a(commutative property).
Proof : Consider the parallelogram ABCD (Fig. 4.10). Let
AB =aand BC =b, then using thetrianglelaw, for triangle
ABC, wehave
AC=a+h.

Now, since the opposite sides of aparallelogram are
equal and pardlel, from Fig. 4.10, wehave AD =BC=Db
and DC = AB =a. Aganusing triangle law, for triangle
ADC, wehave

AC=AD+DC=b+a.
Hence a+b=b+a.

2. Property : For any threevectorsa, band c
(@a+b)y+c=a+(b+c (Associative property)

Proof: Letthevectorsa, b and c be represented by PQ, QR and RSrespectively, asshownin Fig. 4.11(i)

and (ii). Q

(i)

Fig. 4.11

Then a+b=PQ+QR=PR
and b+c=QR+RS=QS
Sl (@a+b)+c=PR+RS=PS
and a+(b+c)=PQ+QS=PS
Hence (a+b)+c=a+(b+c).

Remark : Theassociative property of vector addition enablesusto writethe sum of threevectorsa, b, cas
a+ b+ cwithout using brackets.

3. Property : For any vectora, a+0=0+a=a
Wehave a+0=PQ+QQ=PQ =a
0 a+0=0+a=a, by property (1).

Here, thezero vector Oiscalled the additiveidentity for the vector addition.
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We know that for any two real numbersxandy, |x+y|<|[x|+|y|and [x=y| >||X| = |y]|- Weshall

now establish smilar propertiesfor the magnitudes of thevectors.
4.3.4 Theorem: Let a, b betwo vectors. Then

(i) |a+b] <|al + |b] (equality holdsif and onlyif a and b arelike vectors).
(i) Ja=bl > [la] —[b|]|] (equality holdsif and onlyif aand b are like vectors.

Pr oof
(i) ChoosepointsA,Band Csuchthat AB =a and BC= Db
(seeFig.4.12). Then

la+b| = AC< AB+ BC = [a|+|b. A B
a

Theequality holdsif andonly if B belongstothelinesegment AC, thatis Fig. 4.12

aand b arelikevectors.

(i) lal=l(a=b)+b| < [a=b[+]b|
O lal=Ibl < [a=b| - (1)
Equality |al—|b| = |a—Db| takesplaceif and only if the vectorsb and (a —b) arelike
vectorsand henceband (a—b) +b=a arelikevectors.

Thuslal = |p| < |a—b| (equality if and only if a, b arelike vectors). .. (2
Smilaly,
[b]=lal < [b—a]=|a-Db|(withequality if and only if aand b arelikevectors). .. (3)

Combining (2) and (3) we get that ||a]-|b| < |a-b with equality if and only if
aandbarelikevectors.

4.4 Scalar Multiplication of a vector

Weshall now introducethe operation of scalar multiplication of avector, initialy through ageometric
visudisation and later state somelawsof scalar multiplication.

4.4.1 Scalar multiplication : Let a beagiven non zero vector and A ascaar. Then the product of
thevector aby thescalar A, denoted asAa, isdefined asavector Aacollinear witha. Thevector Aaiscalled
themultiplication of vector a by the scalar A and Aa hasthe direction same (or opposite) to that of vector a
according as the value of A is positive (or negative). Also, the magnitude of vector Aais |A| timesthe
magnitude of thevector a, 1.e.,

Aal=|A||a]  (seedefinition4.4.2)
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A geometric visudisation of multiplication of avector by ascaarisgivenin Fig. 4.13

Fig. 4.13

When A =-1, then Aa=—a, whichisavector having magnitude equal to the magnitude of aand

direction oppositeto that of thedirection of a. Thevector —aiscalled the negative (or additiveinverse) of
vector a, we alwayshave

a+(-a)=(-a)+a=0.

1
Also,if A = m, provideda # 0(i.e., aisnotanull vector), then
1

|Aa|=|Alal= —lal=1.
lal

: . o .1
So, Aarepresentstheunit vector a inthedirectionof a. Hence a = —a.

a|
4.4.2 Definition

Let a be a vector and A be a scalar. Then we define vector Aa to be the vector O if either a

is the zero vector or A is the zero scalar; otherwise Aa is the vector in the direction of a with
magnitude Ala| if A > 0, and Aa= (-A)(-a), if A<O.

Note: If A < 0, then Aais the vector in the opposite direction of a with magnitude (-A) |a].

4.4.3 Some laws of scalar multiplication of vector

We now state somelawsof scalar multiplication of avector which areuseful for further discussion.
1. If aisavector and A isascalar, then (-A\)a=A(-a) = —(Aa).
2. If aisavector and m, n are scalars, then m(na) = (mn)a = (nm)a = n(ma).
Inparticular, if n=-1, thenm(-a) = (-m)a=—-(ma).
3. If aisavector and m, n are scalars, then (m+ n)a=ma+ na.
4.4.4 Theorem: If misascalar and a, b areany two vectors, then
m(a+b) =ma +mb.
Proof: If m=0 oroneof a,b is 0, thenequality holdsclearly.
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Assumethat m# 0,a# 0,b# 0
Casel: m> 0.

Let OA =a, AB=b, OA; =ma. Through A,, draw parallel to b meeting the lineOB inB,.

Then A,B, =mb.

ThenOB = OA+AB=a+h. .. (D)

Since m> 0, m(a+b) and a+b havethesamedirection.

Since AOAB and AOA B, aresmilar (Fig.4.14) mb
OB, _ AB; _
OB AB

0 AB, = mAB =mband O a AT Ay
OB, = mOB ma

- A1

OB, = OA,+AB =ma+mb (2 Fig. 4.14

By (1) and (2), ma+ mb = m(a+ b). B

Case2: m<Othen = m>0 b

O m(a+b) = (-m) (—(a+ b)) (by definition)

= (-m) (-a-b) AL ma
(=m) (=&) + (-m)(~b) (by case 1)
ma+ mb (by definition).

3
A
o ¥
>

Fig. 4.15
4.45 Note B, ©

(i) Two vectorsare collinear (parallel) if and only if oneisa scalar multiple of the other.
(if) ThreepointsA, B and C arecollinear if and only if AB, BC are collinear vectors.

4.5 Angle between two non-zero vectors

We havelearnt about angles between two linesin plane geometry. We now introduce the concept of
the angle between two non-zero vectors, which isdlightly different from theangle betweentwolines. The
concept of angle between two vectorsislargely useful in Chapter 5, which dealswith dot and cross products
of two vectors.

45.1 Definition

Let a and b betwo non-zero vectors. Let O, A and B be points such that OA =a and
OB =b. Then the measure of [JAOB which lies between 0° and 18Q is called the angle
between a and b and isdenoted by (a, b) (see Fig. 4.16(a), (b), (c), (d)).
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gy

-

o 4@*‘0\

@) a A A
Fig. 4.16(a) Fig. 4.16(b)
(a,b)=0° (a,b)=180°
/—I\ a.._ : I b - I I b - m .f I
o A B B O A
Fig. 4.16(c) Fig. 4.16(d)

45.2 Note: Let a, b benon-zero vectors. Then

() (@&b=0" < a and b arelike vectors.

(i) (ab)y=180° - a and b areunlike vectors.

(i) (a,b)=0° 0or180° - a and b arecollinear vectors.
(iv) If (a, b)=90°% then a, b are called perpendicular vectors.

45.3 Note: Let a, b benon-zero vectorsand m, n be positive scalars. Then
(i) (@ab)=(ba
(i) (ab)=(-a-b)

(i) (&, —-b)=(-a, b)=180"-(a, b)

(iv) (a,b)=(ma, nb)
(v) (-ma,nb)=(ma,—nb) = 180°-(a, b)

Check these, by drawing the necessary diagrams.
4.5.4 Definition

Let A and B be two points and P, a point onthestraight line AB. e say that P dividestheline
segment AB intheratio m: n(m+ n # 0), if nAP = mPB.

455 Theorem: Leta and b be position vectors of the points A and B with respect to the origin O.
If a point P divides the line segment AB intheratio m: n(m+ n # 0), then the position vector

1

mb+na. (if k#0,then a/k or%meansE a)

m+ n

of Pis

Proof: Let Pbethepointon AB lying between A and B, inwhich case, Pissaidtodivide AB internaly. Let
OP=r. By definition nAP = mPB.
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0 n(AO+OP) =m(PO + OB) p N B
0 n(OP-0A) = m(OB-OP) A i
O n(r-a=m(-r) b

O (m+n)r =mb +na

r_mb+na

0
+ .
m=+n Fig. 4.17

g

Conversely if P issuchthat r=0P = (mb+ na)/(m+ n), then by retracing the above steps
backwards, we can seethat Pliesontheline AB and nAP =mPB. Hence Pdivides AB intheratio
m: n.

4.5.6 Note: Theaboveformulaiscalled (division) section formula and it holds whether P divides
AB internally or externally. The position vector of the point P which divides the line segment AB
externally (i.e., P lies on AB outside the segment AB) in the ratio m : n is given by
r=_(mb-na)/(m-n).

45.7 Corollary: If Pisthe mid point of AB then m= n and hence the position vector of
P=r =0P=(a+b)/2
Proof: InTheorem4.5.5, takem=n= 1.

458 Theorem: Let a, b be any two non-collinear vectors. If r isany vector in the plane IN
determined by a pair of supports of a and b, then there exist unique scalars x and y such that

r=xa+yb

Proof: Chooseapoint‘O’ intheplane I astheoriginand
pointsA andBinll. a=0OA and b=0B sothatO,A and B
arenot collinear.
Let Pbeapointintheplanell suchthat OP =r. If Plieseither
on the support of a (i.e., ontheline OA) or on the support
of b (i.e.thelineOB), thentake y= 0 or x= Orespectively.
Suppose P does not lie on the supports of a and b.
Through P draw linespardlel to b meeting thesupport of a in
L and parallel to a meeting thesupport of binM. Thus OL
iscollinear with a and OM iscollinear with b (seeFig. 4.18). 5

Hencethereexist scalars x and y suchthat OL =xa
and OM =yb.
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Then r = OP = OL +LP

=OL + OM = xa +ybh.
If r isdsoequalto X a+y b, then (x—X)a =(y -y)b sothatx= X, y=y, otherwise a and b
will be collinear vectors. Thusx andy areunique.
45,9 Corollary: If a and b are non-collinear vectors and x, y are scalars, then
xa+yb =0 if andonlyif x=y=0.
Proof: If x=y=0, then xa +yb=0. Supposethat xa+yb=0.

Since 0=0a+0b, by Theorem 458, x=0=y.

It isknown that non—coplanar vectors do exist in the space and in particul ar three non—coplanar
vectors with the sameinitial point exist. Now, we have the following theorem which we call as space
r epresentation theorem.

45.10 Theorem: Let a, b, ¢ be three non-coplanar vectorsand r be any vector in the space.
Then, there exists unique triad of scalars X, y, z such that

r=xa+yb+zc

Proof: Let‘O’ betheorigin, OA=a,0B=b and OC=c. Let P beapointinthespaceand r = OP.
If P liesonthesupportof a thatis, r iscollinear with a, thenwechoose y=0=z

Similarly, if P liesonthesupport of b or
¢, thenchoose z=0=x or x=0=Yy respectively.

Suppose P liesintheplaneof OA and
OB. Then by Theorem 45.8, r = xa + yb
sothat z=0. Similarly if P liesinthe plane
of OB and OC, then r =yb+zc,x=0
and, if Pliesintheplaneof OC and OA, then s 4
r=xa +zc, y=0.

Now suppose P does not belong to any
of theplanesBOC, COA and AOB. Throughthe
point Pdraw planesparallel to the planesBOC, N
COA and AOB meeting the supportsof a, b and
cinL, M and N respectively (seeFig. 4.19). &
Thusweformthe spacefigure PQL R
M SN O whichiscalled aparallelopiped.

Now, r=0OP=0Q +QP=(OL +LQ)+OM =(OL +ON) + OM
=OL + OM +ON.

C
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Since OL, OM and ON are collinear with a, b and c respectively, there exist scalars
X, Yy and z suchthat OL = xa, OM =yb and ON =zc.

Or=xa+yb+ zc
If r isasoequato Xa +y b+Zc,then (y -y)b + (z-Z)c=(X-X a
If x # X, then a iscoplanar with b and ¢ (Theorem 4.5.8) whichisnot true.
Ox = X. Smilaly y=y and z= Z.
4511 Corollary : If a, b, c are non—coplanar vectors, then xa+ yb+ zc=0 if andonly if
x=y=2z=0.
Proof: If x=y=2z=0, then clearly xa+yb+zc=0.

Suppose xa+yb+zc=0. Since 0=0a + 0b+ 0c by Theorem 4.5.10,
x=0,y=0,z= 0.

4.6 Linear Combination of Vectors

Thissection isdevoted to discussthelinear combinations of vectors.

4.6.1 Definition

Let a, ,a,,4a,,..,a bevectorsand x, ,X, , X, , ..., X bescalars. Then the vector
X, a +Xxa +Xxa + ..+ x a iscalledalinear combination of thevectorsa , a, , a,, ..., a.

n

4.6.2 Note

(i) 2a—b +3c isalinear combinationof a, b, c.

(i) If a, b arenon-collinear vectors, then by Theorem 4.5.8, every vector in the plane determined by a
pair of supportsof a and b can be expressed aslinear combinationof a and b inoneand only one
way.

(i) If a, b, c bethreenon-coplanar vectors, then Theorem 4.5.10 showsthat every vector inthe space
can beexpressed asalinear combination of a, b, ¢ inoneand only oneway.

(iv) Threevectorsarecoplanar if and only if oneof themisalinear combination of the other two.

4.7 Componentsof avector in Three Dimensions

In Theorem 4.5.10 we have proved that every vector can be expressed asalinear combination of
three non-coplanar vectors. Hereweintroducethe concept of components of avector with respect to given
non coplanar vectors a, b, c.
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4.7.1 Definition (Components)

Consider the ordered triad (a, b, ) of non-coplanar vectors a, b, c. If r isany vector then
it is proved in Theorem 4.5.10 that there exists unique triad (X, y, z) of scalars such that
r = xa+yb+zc. Thesescalars x, Y, z arecalled the componentsof r with respect to the ordered

triad (a, b, C).
Any ordered triad of non-coplanar vectorsiscalled abasefor the space.
The components of avector depend on the choice of the base. L2

4.7.2 Representing a vector in component form

Weshdl now expressagiven vector incomponent form. k & C(0,0,1)
Let Obeapointingpace. Cdl ittheorigin. Takethreemutualy
perpendicular X, Y and Z axes. Let us take the points

A(1,0,0),B(0, 1,0) and C(0, 0, 1) onthe X-axis, Y-axis _/#,,.6&____%_5118(0’ 1,0)
- - I ----.-l.."' —

and Z-axis, respectively. Thenclearly w00 j ._...,_Y
|OA| =1, |OB|=1and |OC|= 1. N Fig. 4.20

ThevectorsOA, OB and OC, each having magnitude 1, are called unit vectorsaong theaxesOX, OY
and OZ, respectively, and denoted by i, j and k, respectively (Fig. 4.20).

Now, consider the position vector OP of apoint P(x, y, z) asinFig. 4.21. Let P, bethefoot of the
perpendicular from Pontheplane XOY. Wethus see that P,Pisparalel to Z-axis.

Z4
R
AP(X‘ylZ)
K r
yi J
xi/O~ _ s Y
Q g
X

Fig. 4.21

Asi, j and k aretheunit vectorsalong the X, Y and Z-axes, respectively, and by the definition of
the coordinates of P, we have P,P = OR = zk.
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Similarly QP; =0S=Yyj and OQ = xi.
Therefore, itfollowsthat OP; = OQ + QP; = Xi +Yj
and OP=0P, +P,P=xi +yj + .
Hence, the position vector of Pwithreferenceto Oisgivenby
OP (orr)=xi +vyj + z.

Thisform of any vector iscaleditscomponent form. Here, x, y and z arecaled the scalar components
of r,and xi,yj and zk arecalled the vector componentsof r along the respectiveaxes. Sometimesx, y and
z are also termed as rectangular components.

4.7.3 Length of a vector in termsof its components

Thelength of any vector r =xi +yj + ZK, isreadily determined by applying the Pythagorastheorem
twice. Wenotethat intheright angletriangle OQP, (Fig. 4.21)

OP|= JIOQP +|QP [ =32 +y?,

andintheright angletriangle OP, P, wehave

OPy|= JJOR P +|RPP = (X +y?) +2°.
Hence, thelength of any vector r =xi +yj + Zk isgiven by

IF[=Xi +yj+2ZK|= \/x®+y*+Z*.

4.74 Note : If aand b are any two vectors given in the component form a;i + a,j + a;k and
byi +b,j + bk respectively, then thefollowing results of addition, subtractionand scalar multiplication of
vectorsholdin component form:

(i) thesum (or resultant) of thevectorsaand bisgiven by
a+b=(a; +by)i+(a,+hb) +(a;+byk
(i) thedifferenceof thevectorsaandbisgivenby
a-b=(a; —byi+(a,—by)j +(a;—byk
(i) thevectorsaandbareequd if andonly if a; =b;, a,=b, anda; = bs.
(iv) themultiplication of vector a by any scalar A isgiven by
Aa=(Aa)i + (Aa,)j + (Aay)k.
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4.7.5 Vector joining two points Z A Py(%o, Vo1 2,)
If Py(x;, ¥5, Z) and Py(X,, Y., Z,) are any two points, ?
then thevector joining P, and P, isthevector P, P, (Fig. 4.22). A I|
Joining thepointsP, and P, withtheorigin O, and applying k“}l’ JI; lll
trianglelaw, tothetriangle OP, P,, wehave OP, + P, P, = OP.,, SR, Y, 2)
0
Using the propertiesof vector addition, the above equation _ ]
becomes | v
- _ Fig. 4.22
P,P, = OP,-OP, 4
e, PP, = (X +Y,] +2K) = (X)i +Yy;] +ZK)

= (o X)i+ (Y, — Y+ (- )k
Themagnitude of vector P, P, isgivenby

1PPoI= = %)7 + (¥, —W)? +(z, -2)*.
4.7.6 Definition (Right handed and left handed triads)
Let OA = a, OB =b, OC =c bethree non-coplanar vectors.

Viewing fromthepoint C, if therotation of OA to OB doesnot exceed angle 180° in anti-clock
sense, then a, b, ¢ aresaidtoformaright handed system of vector sand we say ssimply that (a, b, ¢) is
aright handed system. If (a, b, ) isnot aright handed system, thenitiscalled aleft handed system (see
Fig. 4.23(a) and 4.23(b)).

B A
b a

C Right handed system o L eft handed system
Fig. 4.23(a) Fig. 4.23(b)
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4.7.7 Solved Problems

1. Problem: Find unit vector in the direction of vector a = 2i + 3j + k.

: . . N . .1
Solution: Theunit vector inthedirection of avector aisgivenby a = l—a.

a|
Now [a|= /22 +3% +12 =14

. 1 . ) 2 . 3 . 1
Therefore a = —(2i +3j +k) = i + + k.
J14 ( J+k) V14 V14 J V14

2. Problem: Find a vector in the direction of vector a= i —2j that has magnitude 7 units.

Solution: Theunit vector inthedirection of thegivenvector ais
1 1. .. 1. 2.
—a=—(i-2)) =i =i
lal 5 NERNG
Therefore, thevector having magnitude equal to 7 andinthedirection of ais

7a=75=i-2jg="Li-2
A5 5E 5B 5
3. Problem: Find the unit vector in the direction of the sum of the vectors,
a=2i+2j-5kandb=2 +j+ 3k

a=

Solution: Thesumof thegivenvectorsis a+b (=c, say) =4i +3j -2k

and |c| =42+ +(2)? =v/29. 0 & Ia+b— 4 +J%_2k'

a+tb|

4. Problem: Writedirection ratios of the vector a= i + j — 2k and hence cal culateits direction cosines.

Solution: Notethat directionratiosa, b, c of avector r = xi + yj + Zk arejust the respective components
X, y and z of the vector. So, for the given vector, wehavea=1, b =1, c=-2. Further, if |, mand nthe
direction cosinesof thegiven vector, then

a 1 b 1 c

2
== =— m=— = ——as|r| =/6.
Ir| V6

RN

o1 1 20
Thus, thedirection cosinesare ==, — .
. Hl6' V6’ V6o

5. Problem: Consider two points P and Q with position vectors OP = 3a—2band OQ = a+ b. Find
the position vector of a point R which dividesthe line joining P and Q intheratio 2: 1, (i) internally
and (ii) externally.

Solution:
(i) Theposition vector of thepoint Rdividingthejoinof Pand Qinternally intheratio2: 1is
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R = 2(a+b)+(3a-2b) _5a
2+1 3
(i) The position vector of the point R dividing the join of P and Q externally in the ratio 2 :1 is
2(a+b)—(3a-2b)
2-1

6. Problem: Showthat thepointsA(2i —j + k), B(i — 3] — 5k), C(3i — 4j — 4k) arethe verticesof aright
angled triangle.
Solution:Wehave

AB=(1-2)i+ (-3+1)j +(-5-1k=-i —2j - 6k.

BC=(3-1i+ (-4+3)j +(-4+5k=2—j+k.
and CA=(2-3)i+(-1+4)j +(L+4)k=-i +3j +5k.
wehave |ABJ?=|BCJ?+|CAJ%.
7. Problem: Let A,B,C and D be four pointswith position vectors a+ 2b, 2a—-b, a and
3a+ b respectively. Expressthe vectors AC, DA, BA and BC interms of a and b.
Solution: Let ‘O’ be the origin of reference so that OA =a + 2b, OB =2a-b, OC =a and
OD=3a+hb. Then AC = OC-0A
a-(a+2b)=-2Db

O

OR = =4b-a.

DA = (a+2b)-(3a+hb)=-2a+Db
BA = (a+2b)-(2a-b)=3b-a
BC =a-(2a-b)=b-a

8. Problem: Let ABCDEF bearegular hexagon —
with centre ‘O’.  Show that

AB+AC+AD+AE+AF=3AD=6A0.

Solution: FromFig. 4.23

AB+AC+AD+AE+AF

(AB+AE)+AD + (AC + AF)

(AE +ED) + AD + (AC + CD) (Fig.4.24)
(- AB=ED, AF=CD)

AD+AD +AD = 3AD _

6A0 (- ‘O’ isthecentreand OD = AO). F Fig. 4.24_

9. Problem: In AABC, if a, b, ¢ are position vectors of the vertices A, B and C respectively, then

1
prove that the position vector of the centroid G is 3 (a+b+c).
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Solution: Let G bethecentroid of A ABCandA D the
median through thevertex A. (seeFig. 4.25)
Then AG : GD = 2:1. 2

Sincethe position vector of D is% (b+ ©),

by the Theorem 4.5.5, the position vector of Gis
2(b+c)

B D C

+1a Fig. 4.25

_a+b+c
2+1 3

10. Problem: In AABC,if ‘O isthecircumcentreand H isthe orthocentre, then show that
() OA+0B +0C=0H (ilHA+HB+HC=2HO

Solution: Let D bethemid point of BC.

(i) Take*O' astheorigin,letOA=a, OB=b a
OC =c (SeeFig.4.26)

_b+c
2
0 OA+OB+0C = OA+20D = OA+AH =OH

(Observethat AH =2R cosA, OD = R cosA,
Risthe circumradiusof A ABCandhence A H =20D) Fig. 4.26

(i) HA+HB + HC =HA + 2HD =HA + 2(HO + OD)
= HA +2HO + 20D =HA + 2HO + AH =2HO.
Note: Taking circumcentre as the origin, we have proved that the position vector of the orthocentre

of a triangle is the sum of the position vectors of the vertices which will be very useful in
proving geometrical problems concerning triangles.

11. Problem: Let a, b, c and d betheposition vectorsof A, B, C and D respectively which arethe
vertices of atetrahedron. Then provethat the linesjoining the verticesto the centroids of the opposite
faces are concurrent (this point is called the centroid or the centre of the tetrahedron).

Solution: LetObetheoriginof reference. LetG,, G,, G, and G, bethecentroidsof ABCD, A CAD,
A ABD and A ABCrespectively (seeFig.4.27).

b+c+d

Then 0G, = ——




Mathematics- | A

Consider thepoint Pthat dividesAG, intheratio 3: 1.

3(b+c+d)

3
4

+1a

OP =

0 OR l(a+ b+c+d).
4 B Fig. 4.27

Similarly wecan show that the position vectorsof the pointsdividing BG,, CG,and DG, intheratio
1
3:lareequa to Z(a+ b+ c+ d). Therefore Pliesoneach of AG,, BG,, CG, and DG,.

12. Problem: Let OABC beaparalledlogramand D themidpoint of OA. Provethat the segment CD
trisects the diagonal OB and is trisected by the diagonal OB.

a
Solution: Let OA=a, OC=b sothat OB = a+ b; OD= E'

Let M bethepoint of intersection of OB and CD (seeFig. 4.28).
LeteOM:MB=k:1 and CM:MD=1:1
k(a+b)

0 OM :Wandalso

Lall
o :| BEH-HLb la+2b

| +1 2(1 +1)

| k 1
D —_ —_
2(1+1) k+1 1+1

1
Ol=2 and k=7. Fig. 4.28
[J CD trisects OB and OB trisects CD.

13. Problem: Let a, b be non-collinear vectors. If @ = (x+ 4y)a+ (2x+ y + 1) b and
B=(y-2x+2)a+ (2x -3y —1) baresuch that 3a = 23, thenfind xand .

Solution: 3a =2 0 3(x+4y)a+3(2x+y+1)b =2(y-2x+2)a+2(2x-3y-1)b

On comparing the coefficientsof aand b, wehave

X+12y = 2y-4x+4 O 7x+10y=4 - (1)
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and 6x+3y+3 = 4x-6y—-2 0O 2X+9y=-5 (2
Solving (1) and (2), x= 2,y=-1.
14. Problem: Show that the points whose position vectorsare —2a+ 3b + 5¢c,a+ 2b + 3c, 7a—care
collinear when a, b, c are non-coplanar vectors.
Solution: LetP, Q, R bethegiven points.
Then PQ=3a-b-2c,QR=6a-2b-4c
0 QR =2PQ.Hence P,QandR arecollinear.

15. Problem: If the points whose position vectorsare 31 -2 -k, 2i+ 3j - 4Kk,
146
—i+j+2k and 4i+ 5] + )k arecoplanar, then showthat A = 7
Solution: LetthegivenpointsbeA, B, Cand D respectively.
Then AB=-i +5j-3k, AC=-4i+3j+3kand
AD=i+7j+(\ +1) k.
A, B, Cand D arecoplanar if and only if
AD = xAB + yAC, for somescalarsx, y; thatis
i+7j+(A+Dk = x(-i+5 -3k)+y(-4i +3+3Kk)
Equeating the corresponding coefficients
-X—4y=1,5x+3y=7, -3x+3y=)\ +1
Solving thefirst tw ati et —3—1)/‘—1—2
ving thefirsttwo equationsweget x= 7 . 17
146
and hence \ =—-3x+3y—-1= ——.
17
Exercise 4(a)

I. 1. ABCDisaparaleogram.If L and M arethemiddle pointsof BC and CD respectively, thenfind
(i) AL and AM intermsof AB and AD.

(i) A, if AM =AAD -LM

2. In AABC, P, QandR arethemidpointsof thesidesAB, BC and CA respectively. If D isany point
(i) thenexpressDA + DB + DC interms of DP, DQ and DR
(i) ifPA+QB+RC=a, thenfind a.

3. Leta=i+2j+3k andb=3i+]. Findtheunit vector inthedirection of a+ b.

4. Ifthevectors—=3i +4j+ Ak and Hi+ 8]+ 6k arecollinear vectors, then find A and L.
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1n.

12.
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ABCDE isapentagon. If thesum of thevectorsAB, AE, BC, DC, ED and ACisAAC, thenfindthe
vaueof A.

If the position vectors of the points A, Band Care—-2i + ] -k, —4i + 2] + 2k and
61 — 3j — 13k respectively and AB = AAC, thenfind thevaueof A.

. IfOA=i+j+k, AB =3i-2) +k, BC=i+2 -2k and CD =2i +] + 3k, thenfind the vector

OD.

a=2i+5+k and b=4i +mj + nk arecollinear vectors, thenfind m and n.

Let a=2i +4j -5k, b=i+j +k and ¢c = j + 2k. Findtheunit vector in the opposite
directionof a+ b +c.

Isthetriangleformed by thevectors3i + 5] + 2k, 21 —3 — 5k and -5 - 2j + 3k equilateral?

If a, B and y are the angles made by the vector 3i — 6] + 2k with the positive directions of the
coordinate axesthen find cos a, cos 3 and cosy.

Find the angles made by the straight line passing through the points (1, -3, 2) and (3, -5, 1) with the
coordinate axes.

If a+b+c=0ad,b+c+d =pa and a, b, c are non-coplanar vectors, then show that
a+t+b+c+d=0.

a, b, ¢ arenon-coplanar vectors. Provethat thefollowing four pointsare coplanar.
(i) —a+4b-3c,3a +2b —-5¢c, -3a +8b -5¢c, -3a +2b +c.
(i) éa+2b—-c,2a-b +3c, —a +2b -4c, -12a-b - 3c.

Ifi, ], k areunit vectorsa ong the positive directions of the coordinate axes, then show that the four
points4i +5j +k, —j — k,3i + 9] + 4k and — 4i + 4j + 4k are coplanar.

If & b, carenon-coplanar vectors, thentest for the collinearity of thefollowing pointswhose position
vectorsaregiven by

(i) a—2b+3c,2a +3b —4c, -7b +10c
(i) 3a — 4b + 3¢, —4a +5b —6¢, 4a —7b +6¢C
(ili) 2a +5b —4c,a +4b —3c, 4a +7b —-6¢C

[11.1. Inthe Cartesian plane, O isthe origin of the coordinate axes. A person startsat O and walksa

distanceof 3unitsintheNORTH - EAST direction and reachesthepoint P. From P hewalks4 units
of distanceparallel toNORTH - WEST direction and reachesthe point Q. Expressthevector OQ

intermsof i and j (observethat [XOP = 45°).

The points O, A, B, X and Y are such that OA =a, OB =b, OX = 3a and
OY =3b. Find BX and AY intermsof aandb. Futher, if thepoint PdividesAY intheratiol: 3,
then expressBP intermsof a and b.
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3. In AOAB, Eisthemid point of AB and Fisapoint on OA suchthat OF = 2FA. If Cisthe point of
intersection of OE and BF, thenfindtheratiosOC: CEandBC: CF.

4. Thepoint Edividesthesegment PQ internally intheratio1: 2 and Risany point not ontheline PQ.
If Fisapointon QR suchthat QF : FR=2: 1, then show that EF isparallel to PR.

4.8 Vector Equationsof Lineand Plane

Inthissection wediscussthe parametric vector equationsof astraight lineand planewhich areuseful in
solving certain geometric problems. Hereafter P(r) means, Pisapoint with position vector r.

4.8.1 Theorem: The vector equation of the straight line passing through the point A(a) and parallel

tothevector b isr=a+th, tO R.
b

Proof: Let P(r) beany point ontheline (seeFig. 4.29). -

Then AP andb arecollinear vectors A P

[
Y

Or—-a=tb forsometd R.
Or =a+thb

Conversely supposer =a+th. Then r —a =tb

0O AP=tb
o)
0O AP andb arecollinear vectors. Fig. 4.29

O P(r)liesontheline.

4.8.2 Corollary: The equation of the line passing through origin O and parallél to the vector
bisr=tbh, tU R.
4.8.3 Cartesan form: Cartesian equation for theline passing through A(x, , Y, , z) and parallel tothe

X=X _Y~-WNh_Z2—74
[ m n -

vector b=1i + mj + nk is

Fixtheoriginat Osothat OA = xi +Vy;, ] +zk.

If P(r) = (x,y,2) sothat r = OP = xi + yj + zk thenPliesontheaboveline = r=a+th
forsome t O R (HereameansOA).

Now r=a+th = Xi +yj+zk =(xi +y,j +zk) +t(li +mj +nk)

= X=X+t y=y +tm ad z=z+ tn
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ad

X_Xl:y_yl:Z_Zl:t
I m n .

X=X _ Y~V _Z-%

We represent these equations by i - .

If oneof I, m, n iszero, say | = O, the equation becomes

X_Xlzy_ylzz_zlzt(;/_.o)
0 m n '

Thismeansthat x — x =0t =0 sothat x = X, . (Oneneed not become panic on seeing 0inthe
consequent asitisaratio and not afraction).

4.8.4 Theorem: The vector equation of the line through the points A (a) and B(b) is
r=(1-ta+tht0R.

Proof : Let'O betheoriginsothat OA=a and OB=b

A P B
P(r) is apointontheline ~ AP and AB arecollinear vectors
—~ AP =tAB, tOR. a r b
- r-a=t(b-a
- r=(Q-tja+th.
4.8.5 Cartesanform: Let A=(x,y,,z) ad B= (X, Y, Z), 0
P(r) beapointand let Fig. 4.30

r=xi+yj+ zk. ThenPliesontheline AB

e Xi+ yj+zk= (1-t)a +tb forsome tU R.

o (x=x)i+(y-w)i +(z-2)k

= tHx - %)i +(y,-n)i +(z -z)kg

= Xx=% =t(% %), y-y =t(y, ~y1) and z2-7 =t(z -2)
X=X _¥Y~% _ 274 '
X% YomH LH74
4.8.6 Theorem: The vector equation of the plane passing through the point A(a) and paralléel to the
vectors bandc is

r=a+tbh+sc t,sOR.

Proof : Let o bethe plane passing through the point A(a) and parallel to thevectors band cand P(r) be any
point ing.
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tothevectors b and c. Withthelinesegment APasdiagond,
completethe parallelogram ALPM in o with the point L on \
the line paralel to c and M on the line parallel to b (see
Fig.4.31). o

Intheplanead, throughthepoint A, draw linesparalel /

<

0 AL =sc, for some s0 R and AM =tb for some,
t0 R.

Now r—-a=AP = AL +AM =sc+tb A P

Y

Or = a+tb+sc.

Conversdly, if P isany point such that c

r=a+tb+scthenr-a=tb+sc sothat
AP =tb+scand hencePliesintheplaneo. a\/ '

4.8.7 Corollary : The equation of the plane passing 0
through the points A (a) , B (b) and parallel to the vector Fig.4.31
cisr=(1-tya+tb+sct,sO R.

Proof : InTheorem 4.8.6, replacethevector b with AB.

Then theequation of theplaneis
r=a+tAB+sc
e, r =a+t(b—-a) +sc
e, r=(1-tja+tb+sc.
4.8.8 Corollary: The equation of the plane passing through three noncollinear points A (a), B (b)
and C(c) is
r=(1-t-sya+tb+sc where t,sUR.
Proof : InTheorem 4.8.6, replace b with AB and ¢ with AC.

4.8.9 Theorem: Threepoints A (a), B (b) and C (c) are collinear if and only if there exist scalars
X, Y, z(not all zero) suchthatxa+yb+zc=0and x+y+z=0.

Proof : SupposeA, B andC arecollinear. Then AB= A BC forsome Al R.
0 b-a= A(c—-h)
0 a+(-1-AN)b+Ac=0
Take x=1,y= —-1-Aand z=) sothax+y+z=0and x # 0.

Conversdly, let x, y, zbescdars such that atleast one of themisnot zero, xa+yb+zc=0,
x+y+2z=0.
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Supposez # 0. Sincez=-(x+y) and xa+yb+zc=0
O xat+tyb-(xx+y)c=0
O x(a-c¢) +y(b-c)=0
0 x(CA)+y(CB)=0 and x+y # 0.

[ CA and CB arecollinear vectorsand hencethepointsA, B and C are collinear points.

4.8.10 Theorem: Four points A, B, Cand D with position vectors a, b, ¢ and d respectively are
coplanar if and only if there exist scalars X, Yy, z and u not all zero such that

xa+yb+zc+ud=0 and x+y+z+u=0.

Proof : Supposethepoints A, B, C and D are coplanar.

O ThevectorsAB, AC and AD are coplanar.
O Thereexist scalars A and 1 suchthat AD = A AB + 1 AC.
iee d-a=A(b-a) +u(c—-a).
O@d-A-H)a+ Ab+pc+(—d)=0.
Take x=1-A-H,y=A, z=H and u=-1.
Then xa+yb+zc+ud=0and x+y+z+u=0.
Conversely suppose that X, y, z and u are scalars such that atleast one of them is not zero,

xa+yb+zc+ud=0and x+y+z+u=0.

Suppose U # 0 sothat x+y+z=-u# 0.
Now, xa+yb+zc+ud=0 O xa+yb+zc-(x+y+2d=0.
O x(a-d) +y(b-d)y+z(c-d)=0.

[0 xDA+yDB+zDC =0 andoneof x,y,z isnotzero. (- x+ y+z#0)
O DA, DB, DC are coplanar vectors.

U ThepointsA, B, Cand D arecoplanar.

4.8.11 Solved Problems
1. Problem: In the two dimensional plane, prove by using vector methods, the equation of the line

X
whose interceptson theaxesare ‘a’ and ‘b’ is §+% =1,

Solution: Let A =(a0) and B =(0, b).

O A =ai, B =Dbj
By Theorem 4.8.4, the equation of thelineABisr=(1-t)ai + t(bj).
If r=xi +yj, then x=(1-t)aand y=th.
y

X
—-—+=—=1-t+t=1.
a b
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2. Prablem: Using the vector equation of the straight line passing through two points, prove that the
points whose position vectorsare a, b and (3a - 2 b) are collinear.

Solution: Thevector equation of theline passing through two points a andbis r =(1-t)a+tb. The
line also passes through the point 3a— 2b, if 3a—-2b=(1-t)a+tbfor somescaart. Equating the
corresponding coefficients, 1-t=3 and t=-2.

[0 Thethreegiven pointsarecollinear.

3. Problem: Find the equation of the line parallel to the vector 2i —j + 2k and which passes through
the point A whose position vector is 3i +j —k. If P isapoint onthislinesuchthat AP =15, findthe
position vector of P.

Solution: Thevector equation of thegivenlineis
rr=@+j-k)+t(2i -]+ 2k), 't beingascaar parameter.
SinceAP = t(2i - j +2Kk), wehave

15=AP = 4> +1> +4°> = +3t D £+ 5

O OP =@i+j-k)x52i -j+ 2k

13i — 4j + 9k or =7i + 6] —-11k.

4. Problem: Show that the line joining the pair of points 6a — 4b + 4c, — 4c and the line joining the
pair of points —a—2b—3c,a+ 2b - 5c intersect at thepoint —4c when a, b, c are non-coplanar
vectors.

Solution: Equation of thelinejoining thefirst pair of pointsis
r=Q-t)y(-4c)+t(6a-4b+4c),tUR
e, r =(@t)a-(4t)b+(Bt-4)c (1)
Equation of thelinejoining the second pair of pointsis
r=(1-s)(-a-2b-3c)+s(a+2b-5¢c), sl R.
i.,e, r=(2s - 1a+ (4s - 2)b + (-2s - 3) c. .. (2)
Equating the corresponding coefficients of a, band ¢ in (1) and (2) wehave 6t —2s= -1,
4t + 4s =2, 8t + 2s = 1. Solving thefirst and second of these equationswegett=0and s=1/2. These

vauessatisfy thelast equation. Substitutingthevaueof t=0 in(1) or s=1/2in (2), thepoint of intersection
of thelinesis —4c.

5. Problem: Find the point of intersection of theline r =2a+ b + t(b — ¢) and the plane

r=a+xb+c)+y(a+2b-c)wherea, b, carenon-coplanar vectors.

Solution: Atthepoint of intersection of theline and the plane, we have
2atb+t(b-c)=a+x(b+c)+y(a+2b-c).
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[0 On comparing the corresponding coefficients,
2=1+y O y=1
1+t=x+2y O t-x=1
-t =Xx-y O t+x=y=1
Onsolving, weget t=1,x=0.
O Thepoint of intersection=2a+2b-c.

Exercise 4(b)

. Find thevector egquation of theline passing through thepoint 2i + 3j + k and parallel to the vector

4i-2j+3k.

. OABCisapadldogram.If OA =aand OC =, find thevector equation of thesde BC.

. If a,b, c aretheposition vectorsof theverticesA, B and C respectively of A ABC, thenfindthe

vector equation of themedian throughthevertex A.

. Find the vector equation of thelinejoining the points 2i +j + 3k and —4i +3j —k.

. Findthevector equation of the plane passing through the points

i-2j+5k -5j—k and —3i +5]j.

. Findthevector equation of the plane passing through the points (0,0,0), (0,5,0), and (2,0,1).

. If a, b, ¢ are noncoplanar find the point of intersection of the line passing through

thepoints2a+3b-c, 3a+4b-2c withthelinejoining the pointsa—2b + 3c, a—6b + 6¢.

. ABCDisatrgpeziuminwhichAB and CD arepardle. Proveby vector methodsthat the mid points

of thesidesAB, CD and theintersection of thediagonalsare collinear.

. Inaquadrilateral ABCD, if themid pointsof onepair of opposite sidesand the point of intersection

of thediagona sare collinear, using vector methods, provethat the quadrilateral ABCD isatrapezium.

. Findthevector equation of the planewhich passesthroughthepoints 2i + 4 + 2k,

2i + 3j + 5k andpardld tothevector 3i — 2j + k. Alsofind the point wherethisplanemeetsthe
linejoiningthepoints 2i + j + 3k and 4i — 2j + 3k.

. Find the vector equation of the plane passing through points 4i -3j -k, 3i + 7j —10k and

2i +5j — 7k andshow thatthepoint i + 2j — 3k liesintheplane.
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Vectorsareaclassof directed line segmentswhich have both direction and magnitude.
Vector isrepresented by an ordered triple (a, b, ¢) of real numbers. Negative of avector ABis

defined to be BA.

Theline AB iscalled support of thevector AB.
Vectorswith samesupport or pardlel supportsarecaled collinear vectors(pardle vectors)

Collinear vectorsarecalled likevectorsor unlike vectorsaccording asthey havethesamedirection
or oppositedirection.

Addition of vectorsaandb usingtrianglelaw : Thatis,if AB=a andBC =b,thena+b=AC
anda — b isdefinedasa+ (- b).

ma isthe vector in thedirection of awhenm> 0 and (—m) (—a) when m< 0, with magnitudesm
|a], (—m) |al respectively.

m(na) = (mn)a = n(ma) =(nm)a and m(-a) = -m(a) = ~(ma).
Position vector of apoint Pwithreferencetoorigin‘ O’ isOP and AB=0B - OA.
Point Pdividesthesegment AB intheratio m: n(m+ n # 0) if nAP=mPB.

If the supportsare parallel to the sameplane, they arecalled coplanar vectors.
“Non coplanar vectors’ meansnot coplanar vectors.

Representation of avector r in the plane determined by two non-collinear vectorsa and b is
r =xa + yb, wherex, y are unique scalars.

Representation of any vector r inthespaceis r = xa + yb + zc where X,y, zare unique
scaars.

If Pdividesthe segment joining the pointsA(a) and B(b) intheratiom: n, then the position vector

of Pis

Vector equaton of the straight line passing through the point A(a) and parallel to thevector bis

mb + na

m+n

r=a+tbh tOR|.

Vector equation of the straight line passing through two pointsA(a) and B(b) is

r=(1-t)a +tb, t0 R|.
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< Vector equation of the plane passing through apoint A(a) and parallel tothe

vectorsbandc is | r =a +tb +sc, t, s O R|.

< Vector equation of the plane passing through three points A (a), B(b) and C(c) is

r=(1-t-s)ya+tb +sc |

< Condition for collinearity of three points: Three points with position vectors
a, band carecollinear if and only if thereexist scalarsx, y and z (not all zero) such that

x+y+z=0and xa+yb +zc =0.

< Condition for coplanarity of four points: Four points with position vectors
a, b, cand d are coplanar if and only if there exist scalarsx, y, zand u (not all zero) such that

X+y+z+u=0and xa+yb+zc+ud=0.

Historical Note

Hermann Grassmann (1809 - 1877), the originator of calculus of extension, did auniquejob
in creating anew subject. Inhiswork, whichisconsidered asamaster pieceof originality, he developed
theideaof an agebrain which symbol srepresenting geometric entitiessuch aspoints, linesand planes,
aremanipulated using certainrules.

Beginning withacollection of fundamental units g, €,, & - of hisagebra, heeffectively defines
freelinear spacewhichthey generate; that isto say, he considersformal linear combinationsfor ahyper
complex number

8 +36 +3,8 + -
where a,, a,, a, ... arerea numbersand defines addition and multiplication by real numbers. Hethen
develop thetheory of linear independencein away whichisastonishingly smilar to the presentation one
findsin modernlinear dgebratexts. Hegoesonto prove
=0
= —@ Xq
. =1L
Generdlisationsof these operationsled to newer agebraslike Clifford algebraand Exterior gebra.

Itispertinent to say that in 1840 Grassmann took an examination and wroteahighly original long
essay of 200 pages and introduced for the first time an analysis based on vectors, including vector
addition and subtraction, vector differentiation and vector function theory.

X
X

D @
ol
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Answers

Exercise 4(a)

1 1 3
.1 ()AL=AB+ AD, AM =2 AB+AD (i) x= 3.

2. ()DA + DB+DC=DP +DQ + DR (i) a=0

1
3.@(4i+3j+3k) 4. AN=3,4=-6
5 A=3 6.\ =-1/4
7.0D=7i +2j+3k 8 m=10, n =2

-1 . . .
9. = (3i +6] —2Kk) 10. Equilatera triangle
11 0030(:§ cosp = 5 cos :Z

. 7! 71 V 7

12. Cos™ COS H_—B % %

II. 4.(i) Collinear (ii) non-collinear (iii) collinear
1
. 1. OQ:E (i+7j))

1
2. BX=3a-Db,AY=3b-a,BP = Z(Ba-b)
3. OC:CE=41and BC:CF=3:2

Exercise 4(b)

=
—
I

+4)i+@B-2)j+(1+3HM)ktOR

A
-
I

c+ta, tO R
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t
3.r = (1—t)a+§(b+c),t[| R
4.r =21 -30)i+@1+2t)] +@ -4tk tOR
5r=01-t-9(@(-2j+5k) -t(5j + K+s(-3i+5j);t,sOR

6.r=(B)j+si+k;:tsOR

1. 1.a+2b
. . 14 89 _[
[, 1. r =(2+39)i +(4 -t —29)j +(2 +3t +9)k; t, s OOR, ,—,3
( )i+ ( )] +( ) 017 17

2. r=1-s-t)(4i -3j -k +s@+7 —10k)+t(21+5] = 7k); t,sOR



Chapter'’5

Puaduct of Vectars

“One need not carryout operations with vectors
geometrically, but canworkwiththemalgebrically”

= Morris Kline

I ntroduction

In Chapter 4, we studied about the addition and
subtraction of vectors. We also introduced the concept
of multiplication of avector with ascalar and derived
the parametric vectorial equations of straight lineand
plane. In this unit, we intend to introduce another
algebraic operation, called the product of vectors.

Recall that product of two real numbersisareal
number and product of two matricesthat are compatible
for multiplication, is again a matrix. But in case of
functions, we may operate them in many ways, Two
such operationsare multiplication of functionspointwise
and composition of two functions. Similarly we define
two different types of products, namely, scalar (or dot)
product where the resultant is a scalar and vector (or
cross) product where the resultant is avector. Inthe
case of vectors, both the types of products have severa
applications in Geometry, Mechanics, Physics and
Engineering.

Morris Kline
(1908 - 1992)

Morris Kline was a Professor of
Mathematics, a writer on its
history, philosophy and was a
great teacher of mathematics,
and also a popular writer of
mathematical themes. Hisbooks:
Mathematics : A cultural
approach , and Mathematical
Thought from Ancient to Modern
times, are well known.
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We shall concludethischapter by introducing the concept of scalar triple product of threevectors,
explainitsgeometrical interpretation, indicateitsusein obtaining the shortest distance between two skew
linesand a so discussthevector triple product of three vectors.

5.1 Scalar or Dot product of two vectors- Geometrical |nterpretation -
Orthogonal Projections

5.1.1 Definition

Let a and b be two vectors. The scalar (or dot) product of a and b writtenasa.b, is
defined by

ab = [0if oneof a,bis0
' Ha”blcose, if a#0#band 0 is the angle between a and b

5.1.2 Note
() a.bisascalar.
(i) If a, b arenon-zero vectors, then a.b ispositiveor zero or negative according asthe angle
0 between a and b isacute or right or obtuse angle.
(i) If 8=0,thena.b=|al[b|.Inparticular a.a =|a| |acos0 =|a|2 and a.a isgenerally denoted
by a2

(iv) Ife=1 thena.b=—|a| |b| . Inparticular a.(-a) = —|al> D

5.1.3 Orthogonal Projection

We introducethe concept of orthogonal projection of a
vector b on avector a and derive formulae for orthogonal
projectionof b on a anditsmagnitude, we noticethat the
orthogonal projection of b on a is same asthe orthogonal P Q
projection of b on any vector collinear with a. Fg. 51

o

5.1.4 Definition

Let a=AB and b= CD be two non-zero vectors. Let P and Q be the feet of the
perpendicularsdrawn from C and D respectively onto theline AB (seeFig. 5.1). Then PQ is
called the orthogonal projection vector of b on a and the magnitude |PQ]| is called the
magnitude of the projection of b on a. If a# 0 and b= 0, then the projection vector of
b on a isdefined as the zero vector.
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5.1.5 Note

(i) Somepeopleusetheword ‘projection’ for the projection of avector aswell asthe magnitude of the
projected vector. It should be understood according to the context.

(i) Theprojection remainsunchanged evenif the supportsof thevectorsarereplaced by paralel lines.
Hencewe may choosea and b ascoinitial vectors.
_ - _Lhpd la.b)
5.1.6 Theorem: The projection vector of b on a is H| | ﬁa and itsmagnitudeis —— | |
al a
Proof: Let a= OA and b= OB; P bethefoot of theperpendicular from B onOAand 6 = JAOB.
Casel: 0 isacute(Fig. 5.2()). Then B

by definition, the projectionof bon a =OP b

|OP|§§|%

(OB) cos6

O
QD
@
y
|

2| Dﬂﬂﬁ
1M

@)

.

QD

(Jofcos 0) =

b -
(|a|| |COSG) a|2

(a.b)a

o Fi
g. 5.2(b)

Case2: 0 isobtuse (Fig.5.2(b)). Inthiscase, OP isintheoppositedirectionof aand hencetheangle
(b, OP) isTt—AQ

O Projectionof b on a = OP

U-al

|OP| E—E
(OB)cos (r-6) E_—E



Mathematics- 1A

~(0B)cosb ehas
Jl

= ((OB)cost) =
= (ial |b| cos®) %
(a.b)
laf
Case3: When 6 isaright angle, PcoincideswithO sothat OP = 0 andalso
a.b=0.
Hence OP = a—'?a.
£
b b
Thusthe projection vector of bon a = (|a |2) a and itsmagnitudeis%.
al al
5.1.7 Definition

Let a and b benon-zerovectorsand a=0A, b=0B. Le& P bethefoot of the perpendicular from
B ontheline OA. Then OP iscalled the component of b paralle to a and PB is called
component of b perpendicular toa (see Fig. 5.2(a) and 5.2(b)).

Note: PB = b—(a—'zb)a
a|

If 8 =(a,b),thenOP or —OPiscalledthescalar component of b on a accordingas 6 < 90°
or 0 >90°.
5.1.8 Geometrical interpretation of the scalar product

Let a and b betwo non-zero vectors and 6 betheanglebetween a and b. Let OA = a and
OB = b. P isthefoot of the perpendicular from B on OA.

Then a.b = |a]|b| cosH
Ofab= " [a]b|cosd

= |al|OP| (SeeFig.5.2(a))

= Areaof therectanglewhosesidesare|al and |OP|.
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519 Theorem: Let a, b and ¢ be non-zero vectors. S
Then the projection of b+ c on a isequal to the sum of b c
projectionsof b and ¢ on a and hence b - =
er-I- r

a.(b+c a.b a.c

o), @), , (a0,

g g g

L~ M @ N o A

Proof: Let a = OA, PQ = b, QR = ¢, sothat
PR = b+c. Wemay assumethat b+c # 0.

Let L, M and N bethefeet of theperpendicularsdrawn from

P, Q and R respectively ontheline OA (Fig. 5.3(a), (b)).
(b+

a.(b+e)

af

Projectionof (b+c) on a

P

LN =LM + MN

a.b a.c
+

P

5.1.10 Corollary

Y

|
I
! |
| i
5 L a N A
Fig. 5.3(b)

i
]

':

i

'

|

]

i

i
M

(Projectionof b on a) + (Projectionof ¢ on a)

If a,b,c arethreevectorsthen a.(b+c) = a.b + a.c

Proof : Wemay assumethat a, b, c and b+ ¢ areall non-zero vectors.

From5.1.9, the projectionof (b + c) on a = (projectionof b on a) + (projectionof ¢ on a).

a.(b+c) _ ab__ ac

O 5 =
[ g

(a.b +a.c) a

af

Da.(B cF a.br a.c
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5.2 Propertiesof dot product
In this section we discuss some of the basic laws of dot product of two vectors.

521 Theorem: Let a, b betwo vectors. Then
() a.b=Db.a (commutativelaw)
() (ay.b =a.(lb=1 (a.b), | OR.
(i) (la.(mb)=Im(a.b), | and mUI R.
(iv) (-a).(b)=a.(-b)=-(a.h)
(V) (-a).(-b)y=a.b.
Proof: If oneof a,b is azerovector, then by the definition of dot product (i) to (v) hold.
Suppose a # 0 and b # 0. Let (a, b)=6. Then
() (ab)=6=(ba).
0 b.a = |bl|lajcos® = p| b| cosb= a.b.
(i) Casel: I>0.
Then(la, b) = (a, Ib) = (a, b) =6
0 (la).b=|lal |bjcosb=1I]a||b] cosO (--1> 0)
=|a| (I|b|cosB) =a. (Ib) and
(lay.b=1]a]|b| cosb =1(a.b).
Case2 : I<0.

O(a b)=(a Ib) = m- 6 (Fig.5.4) (—1 a)

(—m b)

Now (I @).b = |la||b|cos(m-06)

(=D lal|lb|(-cosB)=I(a.b)
a.( b)=|al||lbcos(mt-9
lal(=1)|b]|(-cosB)=1(a.b)
U (a.b=a.(Iby=1I1(a.b) foralscaars‘|’.

(I>0;m>=0)

Fig. 5.4

(i) In(ii) if wereplacebwith mb(mO R ), then
(la).(mb) = I (a.(mb)) =1 (mb)) =1 (mb.a) =Im(b.a)
(iv) In (ii) if wereplace | with—1,
wehave(-a).b=((-1)a) .b=-1(a.b)=-(a.h).
(v) In (iii) replace | with—21and m with -1 to get theresult.
5.2.2 Note: Fromthefact thata. b= b.a and from corollary 5.1.10.

(b+c).a=b.a+c.a
and (@a+bh)? =a?+b?2+2a.b.
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5.3 Expression for scalar (dot) product, Angle between two Vectors

Inthissection, wederiveformulafor thedot product a.bwhen a andb areexpressedintermsof a
right handed system (i, j, k). We observethat, if i, j, k are mutually perpendicular unit vectors, then
i.i=j.j=k.k=21and i.j=0, j.k=0and k.i=0.

53.1 Theorem:Let (i, j, k) bethe orthogonal unit triad. Let a=a i + a,j + a, k and
b = bji + b,j+ b,k bevectors wherea , b arescalarsfor j= 1,2, 3. Then

a.b_: ab+ ab+ ahb,

Proof: By Corollary 5.1.10, and Theorem5.2.1wehave a,i.(b,i + b,j + b,k)

a b (i.i) +ab,(.])) + a b, (i.k

ab+0+0= ab

e, ai.(b i+ bj+bk=ahb,.

Smilarly a,j .(b,i+ b,j+b,k)=a,b,and a, k .(b,i+ b,j+b,k)=a,b,

0 Againby Corollary 5.1.10, wehave a.b =a b, +ab, + a,b,.

5.3.2 Note

(i) In Trigonometry, for |x| < 1, Cos™x isdefined to bethat angle 6 lying between 0 and Tt
(i.e, 0 < 6 < msuchthat cos®=x. Hence, if 0 istheangle between two non-zero vectors

0 O
a and b, then, from the definition of a.b, we have 6 = Cos™ :HZ@ and in particular if

a=ai+aj+akand b=bi+b,j+ bk then

6 =Cos_1g ab +ab +ab E

Hya + a2 +aZ \Jof +b2 +b2H

(i) a b are perpendicular to each other if andonly if ab, +a b, +a, b,= 0.

54 Geometrical Vector methods
In this section we study the application of dot product in proving certain geometrical results.

5.4.1 Theorem: Angleinasemicircleisaright angle.
Proof: Let AB beadiameter of acircle with centre O.
Let OA=a sotha OB=-a.
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Let P bea pointonthecircle and OP = r (Fig.5.5).

Then PA .PB=(a-r).(-a-r)
— _(az _rz)
= O( la| =1r| = radius) A B
Fig. 5.5
M APB 90°. A
5.4.2 Theorem: Inany triangle, the altitudes are concurrent. .
Proof: In AABC, letthedtitudes AD and BE meetinH. /
TakingH asorigin (Fig. 5.6),
let HA =a, HB =b and HC =c¢
AH s perpendicular toBC
0 AH.BC =0 o3 e
J —a.(c-b)=0 Fig. 5.6
0 a.b=c.a (1)
BH isperpendicular toAC
0 BH.AC=0
0 -b.(c-a =0
0 b.c =a.b .. (2
From(1) and (2), c.a=a.b =Db.c .. (3
Now CH.AB = -c.(b — a)

= —(c.b)+ c.a=0(from (3))
U CH isperpendicular to AB.
U ThelineCF isasoandltitude.

A
Thusthedtitudesof AABC areconcurrent.
54.3 Theorem:In any triangle, the perpendicular
bisectors of the sides are concurrent. F E
Proof: In AABC, let D, E and F bethe mid points of the
sides BC, CA and AB respectively. Lettheperpendicular lines O
toBCand ACat D and E respectively meetinthepoint ‘O’ = = &

(seeFig. 5.7). Weshow that OF isperpendicular to AB. ‘O’
liesonthe perpendicular bisectors of thesidesBC and AC. Fig. 5.7
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O0OB=0C = OA=R (sa) - (1)

Now OF.AB = %(OB + OA).(OB -0A)

= %(OBZ—OAZ)

_ %(RZ— RZ) =0 (from (1))

U OF isperpendicular to AB.

5.4.4 Theorem (Parallelogram law)

In a parallelogram, the sum of the squares
of the lengths of the diagonals is equal to sum of
the squares of the lengths of its sides.

Proof: Let OABC beaparalelograminwhichOB and
CA arediagonas. Let OA =a and OC =c
(seeFig.5.8(a)).

Then OB =a+cand CA=a-c Fig. 5.8(a)

0oB% CAZ |a+dcf +[a-d

(a2+2a.c +cz) +(a2 -2a.c +c2)

2|a|2 + 2|c|2
= OA? + AB? +CB? +0C?. (- OA=BC and OC=AB)
. N 5 _2\l2
5.4.5 Theorem: In AABC, thelength of the median through the vertex Ais E(Zb +2¢° -a ) :

Proof: Let D bethemid point of thesideBC. Take‘'A’ astheorigin. Let AB =a and AC = B 0
that (a, B = OA.

at+ f
2

Since AD , we have

4AD? =a® + g% +2a.p
AB? + AC? + 2AB.AC

= c? + b? +2bccosA A

Ck

=c? +b? +(b2 +c? —az) [see Theorem 10.2.3] Fig. 5.8(b)
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= 2b% +2¢? -a?

0 AD = % \2b%+2¢% -a?
1 2 2 2
E”ZC +2a“-b° and

Note: Similarly,if BE and CF aretheother medians, then BE =

CF = %\/2a2+2b2 -c?

5.5 Vector equation of aplane- Normal form
In Chapter 4 (section 4.8), we have derived the parametric vector equations of planes. In this

section, wederivevector equationsof aplane, by usingthe scalar product of two vectors. The equation of

theplanederivedinthissectioniscalled thenormal form.
5.5.1 Theorem: The vector equation of the plane whose perpendicular distance fromtheoriginis p

and whose unit normal drawn from the origin towards the planeisn, isr.n = p.
Proof : Let o bethe planewhose perpendicular distance ON fromtheorigin‘O’ is p. Let n betheunit
vector inthedirection of ON sothat ON = pn. Let P beany pointintheplanec and OP =r. (see

Fig.5.9)

Since PN isperpendicular to ON, ON.NP =0

O (pn).(r - pn)=0 "
O r.n=p(n.n)=p. .
Conversely, let Pbeany pointand r.n = p [ |
f' |

Then NP.n =(r—-pn).n
=r.n-p(n.n) n/

=r.n-p
0

= 0.
0 P belongstotheplaneo.

55.2 Note
(i) Ifthe plane o passes throughtheorigin‘O’ then p= 0 and hencethe vector equation of o

isr.n=0.
If (I, m,n) arethedirection cosines(see4.1.4) of thenormal totheplane ¢ and P(x,y, 2) isany
r.n=np

(i)
pointthen, PO o =
= (xi+yj+zk).(li +mj +nk) =0
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= Ix+my+nz=p.
Thus the equation of theplane o is | I x+ my + nz=p|.

This equation of the planeis called normal form in Cartesian coordinates.

5.5.3 Theorem: Vector equation of the plane passing through the point A(a) and perpendicular to a
vector nis(r—a).n=0.

Proof: Let P(r) beapointinthegiven plane.
Then AP isperpendicular to n andso, (r—a).n=0
Conversdly, if P(r) isany pointsuchthat (r -a).n =0, then AP isperpendicular ton.
[0 Pbelongstothegivenplane.

5.6 Angle between two planes

We now introduce the concept of angle between two planes.

5.6.1 Definition

Let 0,, 0, betwo planes, n,, n, be the unit normals of o, and o, respectively. Then the
angle between o, and o, is defined to be the angle between their normals n, and n,
(Fig 5.10(a)). If 6istheangle between o, and o, thensois(180° -6 ) (Fig. 5.10(b)). We
shall take the acute angle as the angle between two planes.

Planeol

Angle between
the planes

Fig. 5.10(a) Fig. 5.10(b)
If n,andn, arenormalstotheplanes r.n,=d, and r.n,=d,, and B istheangle betweenthenormals
totheplanes

n

then, cos@ = M0y =|n. n,|.
‘Imllnzl ’

5.6.2 Note: Theplanesare perpendicular to eachotherif n, . n,=0 and pardlel if n isparalel ton..
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5.6.3 Solved Problems

1. Problem: Ifa= 6i+2j+3k and b =2i —9j + 6Kk, then find a.b and the angle between
a and b.
Solution: By Theorem 5.3.1, a.b = 6(2) + 2(-9) + 3(6) =12.

Let O betheangle betweena and b.

O lal = (J62+22+32 =7 and |p| = /22 +(-9)° +6% =11
ab 12 12 L, 120
|:| @: = - — = .
cos allo] 7x11 77 or 9 =Cos H77H

2.Problem: Ifa=i+2j -3kand b =3i -j +2k, then showthat a + b and a —b are
perpendicular to each other.

Solution: a+b=4i + j —k and a-b = -2i + 3j - 5k
O(a b).(a by 4f 2)+ 13} £ 1) € 5)
= -8+8=0.
Oa+b and a —b areatrightangles.
3. Prablem: Let a and b be non-zero, non collinear vectors.
If |a + b| =|a — b, then find the angle between a and b.
Solution: |a+b|=|a-b| O |a b|2= E3 b|2
O (& b).(a by (= b).(a b)
0 a% 2ab b= a? 2ab b’
0 4ab 0

0O abk O
0 Anglebetween a and b is 90°

4.Problem: If |a|=11,|b|=23 and | a—-b| = 30, then find the angle between the vectors
a,bandalsofind|a+ b].
Solution: By hypothesis |a—b|= 30.
Let 8 betheanglebetweenaandb .
0906 |a bf°=a* 2a.b+b?
=121 - (2 x11 x 23 xcos0) +529
= 650 - (506) cos®
125
253

JcosO =-—

-1 1250

e =rm Cos %H
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1250
a+bf =a® +2ab+b? =121 +2 x11 x23 +529 =400.
| | HZSBB
Ola bE 20.
5.Problem: Ifa=1i-j -k and b = 2i —3j + k, then find the projection vector of b on a
and its magnitude.
. — b.a 4, .
Solution: a.b=4, |a| = /3 . Projection vector of b on a= —>a=— (i = j —k).
>3
Magnitude of the projection vector = M =4
ag proj = |a| NeR
6. Problem: If P, Q, R and S are points whose position vectors are i — k, —1 + 2],
2i -3k and 3i — 2] —k respectively, then find the component of RS on PQ.
Solution: PQ =-2i +2f +kand RS=1 -2j+ 2k
IPQ[ =3

Let e betheunit vector inthedirection of PQ.
1, . :
O ezg(—2| +2j +k)-
So the component of RSon PQ = RS.e = - g (See note under 5.1.7).

7. Problem: If the vectors Ai —3j +5k and 2Ai - A j —k are perpendicular to each other,
find A .
Solution: By hypothesis (Ai = 3j +5k).(2Ai =Aj —k) =0
02\% 3% 5 0
O(2x 5)(x 1 0
= - or 1
2
8. Problem: Let a=2i +3j +k, b=4i +j and c=i -3 —7k. Findthevector r such that
r.a=9,r.b=7and r.c=6.
Solution: Letr =xi +yj +zk
[ By hypothesis2x+3y +z = 9, 4x+y=7and x—3y—7z=6. Solving these equations
for x,y and z, wehavex=1,y=3, z=-2
Or=i+ 3] -2k
9. Problem: Show that the points 2i — j + k,i —3j -5k and 3i — 4] - 4k arethe vertices of a
right angled triangle. Also, find the other angles.
Solution:  LetthegivenpointsbeA, B and C respectively (seeFig. 5.11)
Then AB = —i —2j -6k,
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BC = 2i —j +k, B
CA = —-i +3j +5k
0 BC.CA= - 2 3 5 0.
00 C=90°. Y
BC.BA 6 B &
cosB= ———— =, [— C . A
BC|[BA] V41 Fig. 5.11
AB.AC 35
COSA= —— =, |—
|AB||AC| Va1

10. Problem: Provethat the angle 9 between any two diagonals of a cubeisgiven by cos6 =

Wl

Solution: Without loss of generality wemay assumethat the cubeisaunit cube. G

" D
Let OA=i,0C=j and OG = k f\
(seeFig. 5.12) be coterminusedgesof the cube. F \
[0 Diagonal OE =i + j + k anddiagona kT?E
L
BG=-i-j+k. <N
’ | et
Let 6 bethe smaller angle between thediagonals - o C
OE and BG. : :
OE.BG -1-1+
Thencose:| |—| 14—1 A

OE|[BG| V343 3’ Fig. 5.12 é
11. Problem: Let a, b, ¢ be non-zero mutually orthogonal vectors. If xa+ yb+ zc= 0, then show
that x = y=2z=0.
Solution: xa+yb+zc=00 a.(xa yb zc¥ O
0 x(a.ay 0
0 x=0(-a.& O0).
Similarly y=0, z =0.
12. Problem: Let a,b and ¢ be mutually orthogonal vectors of equal magnitudes. Prove that the

vector a + b + cisequallyinclinedtoeachof a,b and c, theangleof inclination being Cos‘l%.
3
Solution: Let[a] = b =|¢|= A .
Now, [a+b +cf° =a? +b? +c? +2 ya.b
=3)? (wa.b=b.c =c.a =0)
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Let O betheanglebetweena and a + b + ¢

ala+b+c)  aa _ 1

a+rbrd Ava) VB

Similarly, it can beprovedthat a+ b+ c inclinesat anangleof Cos™* % with band c.

13.Problem: The vectors AB = 3i — 2 + 2k and AD =i — 2k represent the adjacent sides of a

Then cosO =

parallelogram ABCD. Find the angle between the diagonals.
Solution : From Fig. 5.13,

Diagonal AC =AB +BC o C
=(3i -2 +2k) + (i — 2Kk) i
=4i -2 i — 2k

Diagona BD = -2i + 2] — 4k.

Let 6 betheanglebetween AC and BD.

B
_ AcBD _ -8-4__ 3 3i — 25+ 2k
|AC||BD| 2024 10 Fig. 5.13

14. Problem : For any two vectors a and b, show that
() |a.b| <|a]|b] (Cauchy - Schwartzinequality)
(i) Jla+b|<|al+|b] (triangleinequality)
Solution:
() If a=0 orb=0, theinegqualitiesholdtrivially.

So, assumethat |a] #0 # |b|. Then % =|cosB]| <1.
a

Hence [a.b| < [a] |b|.
(i) Consider [a+bj?= (a+b)?=(a+b).(a+b)
—a.ata.b+b.a+b.b
= |al? +2(a.b) +|bf>, (scdarproductiscommutative)
< laf+2]a.b|+[bP (- x<[X 0K R)
< laf+2|a||b[+ |b[* (from (i)
= (la] + [b])?
Hence |a+b| < |a] +|b|.
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15. Problem: Find the cartesian equation of the plane passing through the point (-2, 1, 3) and
perpendicular to thevector 3i + J + 5k.

Solution: Let A = =2i + j +3k and r =xi +y| + zk beany point Pintheplane.
OAP =(x+2)i (y D (= 3)k.
AP isperpendicularto 3i + j +5k O AP.(3+ # 5k¥ O
0 3(x+2) 1(y 1 5(z 3F O
0 3% y 5z 1& O.
16. Problem: Find the cartesian equation of the plane through the point A (2, -1, -4) and parallel to
theplane 4x -12y -3z -7 =0.
Solution: Thenormal totheplane 4x —12y -3z -7 =01is 4i -12j - 3k..
Hence 4i —12j - 3k isalsonormal totherequired plane.
Let P=xi + yj + zk beany pointintherequired plane.
Then AP . (4i -12j -3k) =0
ie, {x-2)i +(y +1)j +(z+ 4)kB. (4 -12j -3k) =0
ie, 4(x-2)-12(y +1) -3(z+ 4) =0
i.e, 4x —12y -3z = 32.
17. Problem: Find the angle between the planes 2x — 3y — 6z =5 and 6x + 2y — 9z = 4.
Solution: n, =2i —=3j -6k and n, = 6i + 2] -9k arenormastothegivenplanes. Let6betheangle
betweenthe planes. Hence 8 istheanglebetweenthenormals n, and n, (Definition5.6.1).
n.n, _12-6+54 _ 60 _60
In||n,| 49121 7x11 77

18. Problem: Find unit vector orthogonal to the vector 3i + 2j + 6k and coplanar with the vectors
2i+j+kand i —j+Kk.

0 cosO =

Solution: Let a=2i +j+k, b=i—-j+k and c=3i +2j + 6k
Let r beavector coplanar with a, b and orthogonal to c. Then

r =xa+ yb wherex,yarescaars, r.c =0 and |r| = 1.
Now, r = xa + yb =(2x+ y)i + (x-y)j + (x+ y)k
r.c=0 0 3(2x+y} 2(x yy 6(x+yy O
O 14x+7y=0
O y= 2x. . (D
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Also ] =10 (2x+y)3- (% y)i (x+ y)2= 1
O 9x*+x? =1 from(1)

0 x =t i
10
1 .
Or =+-—(3j —k).
10(J )

Exercise 5(a)

. Findtheanglebetweenthevectorsi + 2j + 3k and 3i — j + 2k.

. Ifthevectors 2i + A j —k and 4i — 2j + 2k areperpendicular to each other, find A.
. Forwhat valuesof A, thevectorsi — Aj + 2k and 8i + 6] — k areat right angles?

.a=2i —-j+k,b=i -3j -5k . Findthevector c suchthat a, b and c form the sidesof a

triangle.

. Findtheanglebetweentheplanesr.(2i - j +2k) =3 and r . (3i + 6] + k) =4.

. Lete, and e, beunit vectorsmaking angle®. If % le, — &, =sinA0, thenfind A .

.Let a=i+j+k andb=2 +3j +k . Find

() Theprojectionvector of b on a and itsmagnitude.

(i) Thevector componentsof binthedirectionof a and perpendicular to a.

. Find the equation of the planethrough the point (3, -2, 1) and perpendicular tothevector (4, 7, —4).
Ifa=2i +2j -3k, b =3i —j +2k,thenfindtheanglebetween 2a + b and a + 2b.

. Find unit vector paralel to the XQY - planeand perpendicular tothevector 4i — 3j + k..
.Ifa+b+c=0,|al =3/|b =5and |c| = 7, thenfind theanglebetween a and b.

1f |a| =2, |of =3 and |c| = 4 and each of a, b, ¢ is perpendicular to the sum of the other two

vectors, thenfindthemagnitudeof a + b + c.

. Find the equation of the plane passing through thepoint a = 2i + 3] — k and perpendicular tothe

vector 3i — 2j — 2k andthedistanceof thisplanefromtheorigin.
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5. a,b,cand d arethe position vectorsof four coplanar points such that

(@-d).(b-c) = (b—-d).(c—a) = 0. Show that thepoint d representsthe orthocentre of the
trianglewith a, b and casitsvertices.

[11.1. Show that thepoints(5, -1, 1), (7,-4,7), (1, -6, 10) and (-1, -3, 4) aretheverticesof arhombus.

2. Let a=4i +5j -k, b=i -4j +5k and ¢c=3i + ] —k. Find the vector which is
perpendicular to both a and b whose magnitudeistwenty onetimesthe magnitudeof c.

3. Gisthecentroidof AABC and a, b, c arethelengthsof thesidesBC, CA and AB respectively.
Provethat a®+ b?+ ¢® = ?;(OA2 + OB? + OCZ) - 9(0G)? where* O’ isany poirt.
4. Alinemakesangles 6,, 0,, 6, and 6, withthediagonalsof acube.

Show that os°0, + cos’0, + cos’0, + cos’0, = 3

5.7 Vector product (cross product) of two vectorsand properties

Inthissection, werecall * Right and L eft handed system’ of avector triad introduced in Chapter 4.
We shall definethe vector (cross) product of two vectorsand study some of the propertiesof cross product
of vectors.

5.7.1 Right handed and L eft handed Systems.

Consider thethreedimensional rectangular coordinate system (Fig. 5.14). Inthissystemwhenthe
positive X -axisisrotated counter clock wiseintothepositive'Y -axis, aright handed (standard) screw would
advanceinthedirection of the positiveZ-axis. (Fig. 5.14(i)).

Inaright handed coordinate system, thethumb of theright hand pointsin thedirection of thepositive
Z-axiswhenthefingersare curled inthedirection away fromthe positive X-axistowardsthe positive Y -axis.
(Fig. 5.24(ii)) 7

z
A

Fig. 5.14(i) 5 Fig. 5.14(ii)
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Let O, A, B and C be pointsin the space such that no three of them are collinear. Let OA =a,
OB =bandOC =c(Fig. 5.15(i), (ii), (iii)). Observingfromthepoint C, if theangleof rotation (inthe counter
clock wise sense) of OA to OB does not exceed 180°, then the vector triad (a, b, ¢) issaid to beaRight
handed triad or Right handed system (Fig. 5.15(i)).
If (&, b, c) isnot aright handed triad, thenitissaid to bealeft handedtriad (Fig. 5.15(ii)).
B C z

b c i

okl |

# < 180°
b
Fig. 5.15 (i) B Fig. 5.15 (ii) X Fig. 5.15 (iii)

5.7.2 Note: (i) If (a, b, c) isaright handed (left handed) system, thenthetriads(b, ¢, a) and (c, a,b) dso
form right handed (left handed) systems.

(i) If (& b,c) isaright handed triad and a, b, c are mutually perpendicular to each other, then (a, b, ¢)
iscalled an orthogonal triad. Thusthevector triad (i, j, k) isanorthogonal triad (Fig. 5.15(iii)).

(i) 1f any two vectorsin atriad areinterchanged, thenthesystem will change. For example, (a, b, c) and
(b, &, ¢) form opposite systems.

(iv) If any vector of asystemisreplaced by itsadditiveinverse, thenthe system changes. Thus(a, b, ¢) and
(a, b, —c) form opposite systems.

5.7.3 Definition

Let a and b benon zero non collinear vectors. The cross (or vector) product of a and b,
written as a x b (read asa crossh) isdefined to bethevector (|a] [bjsin®)n where @ istheangle
betweena and band n isthe unit vector perpendicular toboth a and b such that (a, b, n) isaright
handed system.

If one of the vectors a, b isthe null vector or a, b are collinear vectors then the cross product
a x b isdefined as the null vector O.

5.7.4 Note: If a, b arenon-zero and non-collinear vectors, then a x b isa vector, perpendicular
to the plane determined by a and b, whose magnitudeis [a| |bjsinf (observethat sin 8 is positive).
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In the following theorem we prove that, the cross product of two non-zero
non-collinear vectors does not obey the commutativelaw.

575 Theorem:If a and b aretwo vectors, then ax b = (b xa).

Proof : If oneof a, b isthenull vector or a, b arecollinear
vectors, then axb=0 and bxa=0 and hence
axb= —(b xa). Suppose a, b are non—zero and non-collinear
vectors. Let B betheanglebetween a and b and n betheunit
vector perpendicular toboth aand bsuchthat (a, b, n) isaright
handed triad. Hence by definition a xb = (ja/|b|sin6)n. In this
cae 8 istraversedfrom atob (Fig. 5.16). Asnotedearlier (note
5.7.2 (iii) and (iv)) (b, &, —n) isaright handed triad, i.e., 0 s 7
traversed frombtoa(Fig. 5.17). Fig. 5.17

If weassumeaand btolieintheplaneof the paper, then n and-n both will be perpendicular to the
plane of the paper. Observethat n isdirected abovethe paper while—n isdirected below the paper.

Ok & ([a[o]sin6)}{ nk - (jallolsin®)r= - (ax b).

Thus | (bxa) = —(a xh)

Note: |ax b| = |b x a =|a] |b[sin6.
5.7.6 Theorem: Let a b bevectorsand I, m be scalars. Then
() (-a)xb=ax(-b) =-a %) =b xa
(i) (-a)x(-b)=axb
(i) (1a)xb=I (axb)=a x(Ib)
(v) (1a)x (mb) =1m (axb)

Proof : Inthecase, when one of a, bisthenull vector or they are collinear vectorsor one of the scalarsl,
m isthe zero scalar, then all the above equalitieshold good. Hence weassumethat a, b arenon-zeroand
non-collinear vectors and |, m arenon-zero scalars. Let 6 betheanglebetween aand b and n bethe
unit vector perpendicular to both aand b suchthat (a, b, n) isaright handed triad.
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(i) Thenanglebetween —a and b is 1T — 6 (see Fig. 5.18).
From note 5.7.2(iv), thetriad (-a, b, n) isaleft handedtriad and (-a, b, —n) isaright handed

0{ ax b= (i a[bjsin(z 0)){ n)
- - (al isino) n
=-(axb) =b xa.
~((-b) xa) (Theorem 5.7.5)
~(~(b %)) (- (-a) xb = ~(a xb)
bxa = —(a xb)
Thus (-a)xb = —(a xb) =a x( -b) =b xa.
(i) (-a)x(=b) =~F x(-b)g (by ()
=~ B (axbj (by (i)
= axb.
(iii) Let 1> 0. Thenanglebetweenla and b is6 and |l a| =1]a .

triad.

Also  ax(-b)

Fig. 5.18

Further, thevector triad (1 a,b,n) isaright handed triad.
O(lax b (Jlal|b|sine)n
= (I/al|b|sin6)n

| Hlallblsin6)ng

=1(axb).
Thecasewhen | < 0 followsfrom (i) by replacinga with| a and thefact that —I > 0.
(iv) (1a) x (mb) =Im(a xb) followsfrom i), (ii) and (iii).

Theproof of thefollowing Theorem 5.7.7 isbeyond the scope of thisbook and henceweassumeits
validity without proof.
5.7.7 Theorem (Distributive law)

If a b and c arevectors, then (i)|ax(b+c)=axb +a xc
(i) [(a+b) xc =a xc +b xc.
Note: By assuming (i) and recallingtheresultthat b x a = - (a xb) weget (ii).
If (i, j, k) isanorthogonal triad, thenfrom the definition of the crossproduct of two vectors; itis
easytoseethat (i) i xi = j x j =k xk =0 and
(ii)ixj=k, jxk =iandk xi=j.
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Inthissection, wederiveformulafor a x b whenaand baregivenin (i, j, k) systemand deduce

theformulafor |a x b].

5.8.1 Theorem
Let a=aji +a,] +ak and b=Dbji +Db,j +bk. Then

axb=(ab; —ah)i —(ab;—ah)j +(ab, —a,h)k

Proof : For proving theaboveformula, weuse Theorem 5.7.7 and the property of cross product among

i, j and k, asmentioned at the end of Theorem 5.7.7.
axb = (ai + aj +ak) x(bi +byj +bk)
= Buby (i xi) +ab, (i xj) +ab (i xk)g
+ E(az b (jxi "'azbz(j Xj) +a2b3(j Xk))%
+ Hagby(k xi) +agh, (k x j) + a5y (k xk))H
= Fu b (0)+a bk —ay b, jH +H-a, bk +a, b, (0) +a, by i
+Esbyj - aghyi +a3b;(0)B
Da b (aby ab)i- (abs adb)i+ (&b ab)k

5.8.2 Notation: Adopting theexpansion of a3 x 3 determinant of real matrix

a4
b b, Q ‘
a C_L c, a3,
G & G
theaboveformulafor a x b cannow beexpressed as
i ]k
axb=a a a
b b, b
5.8.3 Corollary

If a=aji +a,] +ask, b =bji +b,j +bk andBistheanglebetweenaandb, then

sing =

J2 (8 - ayb,)’

Jsa [3b?

Proof: By Theorem5.8.1, wehave

axb=(a,b -ab)i —(ab -ah)j +(ab -ab)k.



Ofa b= § (abe ab,) andja = Jof +af +a3 and [ = ol + b3 +b5

Now, |a x b =|a| |b| sin6, sothat

laxb _3(ab - ah,)

Ak a5

5.8.4 Note: To determinethe angle between two vectors, we use the dot product of vectorsrather than the

sing

crossproduct, asthe crossproduct givesvalueof sin@whichispositivefor 6 [ (0, 7'[).
5.8.5 Theorem: For any two vectors a and b,
lax b|2 =(a.a)(b.b) -(a.b)’ =a2b? - (a.b)’.

Proof: |a x b|2 = |a|2|b|zsin29 where 8 istheanglebetween a and b.

= [af* |b® (1—00526) = |a* |b* - |a* |b* cos?6 = (a.a)(b.b) - (a.b)’.

5.8.6 Note: If a and b arenon-collinear vectors, then, unit vectors perpendicular toboth a and b are
, (axb),
jax b

5.9 Vector Areas

Inthefollowing, weintroducethe concept of vector areaof aplane region bounded by aclosed plane
curve (acurveinwhichinitia point and terminal point arethe same) and find vector areaof atriangleand
pardleogram.

5.9.1 Definition (Vector area)

Let D be a plane region bounded by P,

P 2 P P,
closed curveC. Let P, P,, P, bethreepoints /2./‘»_| T A
on C (taken in this order). Let n be the

- D P
unit vector perpendicular to the region D 1
such that, fromthe side of n, the pointsP, | p, c \‘
P,and P, areinanticlock sense. If A isthe

area of theregion D, then An is called the o 510 I -n
vector area of D. [SeeFig. 5.19(a), (b)] 'g. 5.19(a) ig. 5.19(b)
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5.9.2 Note: If thepoints P, P, and P, arein clock sense from the side of n, then the vector areais
A (- n). Inany casethe vector areaof aplaneregion D, iseither An or A(—n), so that the areaisthe
magnitude of thevector area.

Inthefollowing theorems, wederivethevector areaof atriangleand paralelogram asapplications of
crossproduct of vectors.

5.9.3 Theorem: The vector area of AABC is

%(AB x AC) =% (BC x BA) =%(CA x CB).,

Proof : Letthevertices A, B and C of thetriangle be described in anticlockwise sense so that the closed

boundary of the planeregion AABC isBC O CAO AB. An
Let A betheareaof AABC. C

Let n betheunit vector inthedirectionof AB x AC.

A = %(AB) (AC) sinA

1

0 an= 2 (AB) (AC) (sinA)n

E|AB||Ac:| (sinA)n A
2 A -
% (AB ><AC)_ Fig. 5.20

5.9.4 Coroallary: If a, b, c aretheposition vectors of the vertices A, B and C (described in counter

1
clockwise sense) of AABC, thenthevector areaof AABC is 5(b><c+c><a +a xb) and itsareais

%|bxc+cxa +a xb|.

Proof : From Theorem 5.9.3, thevector areaof

AABC = % (AB x AC)

= 2Hb-a)x(c -a)
= 2 @xc+bx(-a) +(-a) xc +( ) {
= xc - (b xa) -(a xc) +05

= %[bxc +c xa +a xb|

Areaof AABC = A =|An| :%|b xC +c xa +a xb|.
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5.9.5 Note: Sincevector areaof aplaneregion D isavector quantity perpendicular to theplaneof D, it

follows that, the vector (b x ¢) + (c xa) +(a xb) isperpendicular to the plane of the A ABC where
a, b, caretheposition vectorsof A, B and C respectively.

5.9.6 Theorem (Vector areaof aparallelogram): Let ABCD bea parallelogramwith verticesA, B, C
and D described in counter clockwise sense. Then, the vector area of ABCD intermsof thediagonals

AC and BD is%(ACX BD).

Proof : % (AC xBD)

% (AB +BC) x (BA + AD)

1 D 1
=5 [AB x BA + AB x AD +BC x BA +BC x AD]
. %EABXAD+(—CB)XBA§
1 O
= EEABXAD+(—CB)XCDQ(-.- BA =CD)
= > (AB xAD) +~ (CD xCB) Fig. 5.21

= Vector areaof A ABD + vector areaof ACDB
Vector areaof ABCD.

5.9.7 Note
(i) Infact, the vector areaof any plane quadrilateral ABCD in terms of the diagonals AC and BD

is%(AC x BD),

(i) Theareaof thequadrilateral ABCD is %IAC xBD].

(i) Thevector areaof aparallelogramwithaand b asadjacent sidesisa x bandtheareais|a x b] .

5.9.8 Theorem: Let (a, b, c) be a non-coplanar vector triad,

a= la+lLb+l,c and B = ma+mb+mec. Then
bxc cxa axb

axPB=|h P I3 |

m m

Proof: Using thedistributivelaw of cross product over vector addition (Theorem 5.7.7) we have

axPB=Im(axb)+lm(axc)+l,m(bxa) +l,m(b xc) +I;m(cxa)+I,m,(c xb)
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(I,my =13m,)(b xc)=(l,my -;m)(c xa) +(I,m, 4,m)(a xb)
—(axb),c xb =-(b xc)and a xc = —(c xa))
bxc cxa axb

—
(o
X
a8}
1

Il IZ |3

moom,m|

Note : In the above theorem, if wetake a =i, b =j and ¢ =k suchthat (i, j, k)isaright handed
system, then we obtain theformulafora x Basin5.8.2.

5.9.9 Solved Problems
1. Problem: If a=2i -3j +5k, b =-i +4j +2k thenfind a x b and unit vector perpendicular
to both a and b.

[ T
Solution: axb=|2 -3 5 = -26i —-9j +5k
-1 4 2
Theunit vector perpendicular tobotha and b
axb 1 : .
=+ =+——— (261 —-9j +5k
laxb 782 ( ] ).

2. Problem: If a=2i -3j +5k, b =-i +4] +2k, then find (a + b) x (a —b) and unit vector
perpendicular toboth a+b and a - b.
Solution: (a+b) x(a -b) = -(a xb) +(b xa)
-2(a xb) = -2(-26i —9j +5k) (see problem 1)
= B2i +18j —10k
Unit vector perpendiculartobotha + b anda - b

= =

12 (26i +9j -5k).

Remark: Inproblems1and 2, you find that the unit vectors perpendicular to both a and b aresameasthe
unit vectorsperpendicular toboth a + b and a — b. Givejustification.
3. Problem: Find the area of the parallelogram for which the vectors a = 2i —3j and b =3i -k

are adjacent sides.
Solution: Thevector areaof thegiven parallelogramis

ik
axb=|2 -3 0|=3 +2j +9%.
3 0 -

0 Area = [axb| =/94.
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4. Problem: If a, b, c and d are vectorssuchthat axb =cxd and axc =b xd, then show
that the vectors a — d and b — ¢ are paralldl.
Solution: axb=cxd, axc=bxd. Onsubtraction, a x (b - c) =(c —b) xd
=d x(b -c)
O(x dkx (b- cF O
Oa dandb - c areparale vectors.
5. Problem: If a=i+2j+3k and b=3i +5] -k aretwo sidesof atriangle, then find itsarea.

Solution: Area of the triangle is equal to half of the area of the parallelogram for which
a and b are adjacent sides

= Slaxb
2

k
3| =-17i +10j -k,

]
But axb=[1 2
35

O Areaof thetriangle = %|a x b| = @
6. Problem: In AABC, if BC=a,CA =b and AB = ¢ then show that
axb=bxc=c xa.
Solution: a+b+c=BC +CA+AB =BB =0
Oa b=-c
Da (a bF a { c)
Da b- ( cfF o a.
Also  (a+b)xb=(-)xb
Da - (¢ bE bx c
Ok & &« b= x a.
7. Problem: Let a=2i-j+k and b=3i +4j -k. If 6 is the angle between
aand b, thenfindsin 6.

i j k
Solution: axb = |2 -1 1|=-3i +5j +11k and|a| = v/6, |b| =+/26 and
3 4 -
laxbl = J155.
Now sinf = axbl _ V185 _ [155

a bl V626 V156
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8. Problem: Let a,b and ¢ besuchthatc#0, axb=c,bxc =a. Showthat a, b, c arepair

wise orthogonal vectorsand |b| =1, |c| =|al.
Solution:  axb=c O ¢ isperpendicular toboth a and b.
bxc=al a isperpendiculartoboth b and c.
O a, b, ¢ aremutualy orthogonal vectors

O|ck |a bE |al|b| sin90% |a]|b] (D)
la| = |b x ¢| =|b||c| sin90° =]b]|c| .. (2)
From (1) and (2), |c|[a] = |c||a||b|2
O bk 1andfrom (1), |c|=]a].
9.Problem: Let a=2i +j —2k,b =i +j. If cisavector suchthata.c = |c|, |c—a| = 2¢/2 and
the angle between a x b and ¢ is30°, then find the value of |(a x b) x ¢|.
Solution:  |a] =3,|b| =v2 and a.c =|c|.
2J2=|c-d 08 |e a|2: |c|2+ |a|2— 2(a.c)
0& |c|2+ 9 2[c|
0 (- 2)= 0
Olck 1.

i ik
Now axb=2 1 -2 =2 -2] +k.
11 0
e 13
O|(a b¥ d= |a< b||c/sin30 —3(1)5—5.

10. Problem: Let a, b be two non-collinear unit vectors. If a=a - (a.b) b and
B=a x b, then showthat |B| = |a|.

solution:| BJ? =[axb* = |a?|bj® - (a.b)” (see Theorem 5.8.5)

=1- cos’0=sin’6, where g istheangle between aand b.

o = + (a.0f |5” - 2(ab)’
= 1+c0s?0 —2cos20 =sin’0

OlBl= Jol.
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11. Problem: Anon-zero vector a isparallel totheline of intersection of the plane determined by the
vectorsi, i +] and the plane determined by the vectors i —j, i+ k. Find the angle between a and
the vector i — 2j + 2k.
Solution:  Let | betheline of intersection of the planes determined by thepairsi, i +jand i —j, i +k.
Let ny =i x(i +j) =i xj =k and
n, =(i —j) (i +k)
=-j+k —-i =- - 4.
[0 n, isperpendiculartol and n, isalso perpendicularto |.
O Since a isparallel tothelinel, followsthat a isperpendicular to both n, and n, .
0 aispadleiton xn, =k x (4 —j +k) =—j +i =i -j.
0 a=A(nxn,)=A(i —j), forsomerea A. Let b =i —2j + 2k.
Let 6 betheanglebetweena and b.
a.b_ /\(1+ 2)_+ 1
ol 2@ V2
Oo= 45° or 135°.
12. Problem: Let a=4i +5j -k,b =i —4j +5k and ¢ =3i + j —k. Findvector a whichis
perpendicular tobotha and b and a.c= 21.
Solution: Since a isperpendicular to both a and b, thereexistsscalar A such that

[l cost=

i j ok
a =A(axb)=A4 5 -
1 -4 5
=) (21 - 21j - 21K)
=21\ (i - j -k).

a.c=21021(3 & 1 21

1
0 x 3 and a =7 -7j - 7K.

13. Problem: For any vector a, show that |a x i|2 +]a x j|2 +la ><k|2 :2|a|2.
Solution: Let a=xi+yj+zk.
Then axi=-yk +zj.

O |a i|2= v+ 7
Smilarly [ax j|* =22+ x®and|a x k" =% + y?

Ofac if* Jac jf* [ac K= 2(x + y*+ 22)= 2Jd".
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14. Problem: If a is a non-zero vector and b, ¢ are two vectors such that axb =a xc and
a.b=a.c,thenprovethat b=c.
Solution: axb=axc D& (b cF O

10.
1.
12.

13.

14.

O either b=c or b - c iscollinear witha
Agan a.b=a.cO a. (b c¥ O

O either b c or b - c isperpendiculartoa.
OIf b #c,thenb - c isparale toa and isperpendicular toawhichisimpossible.
OB c.

Exercise 5(b)

It |9 =2l =3and (p.a) =, thenfind [px "

If a=2i - j+k and b=i -3j -5k, then find |a x b|.

If a=2i -3j +kand b =i +4j -2k, thenfind (a +b) x(a - b).
If 4i +2_3pj + pk isparallel tothevector i + 2j + 3k, find p.
Computea x (b +c) +b x(c +a) +c x(a +h).

If p=xi +y]j +zk,thenfind | pxk|.

Compute 2j x (3i = 4k) + (i +2j) xk.

Find unit vector perpendicular toboth i +j +k and 2i +j + 3k.
If Bistheanglebetweenthevectorsi +j and j +k, thenfindsin®.

Findthearea of theparalelogramhaving a = 2j —k and b = —i + k asadjacent sides.
Findtheareaof theparalled ogramwhosediagonalsare 3i + j — 2k and i — 3j + 4k.

Findtheareaof thetrianglehaving 3i + 4j and —5i + 7] astwoof itssides.

Find unit vector perpendicular to the plane determined by the vectors a = 4i + 3j -k and
b=2 -6j -3k.

Findtheareaof thetrianglewhoseverticesare A(1, 2, 3), B(2,3,1) andC(3, 1, 2).
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. 1.

2.

3.

10.

1.

1.1

If a+ b+ c =0,then provethat axb =b xc =c xa.

Ifa=2i +j-k b=-i +2j -4k andc =i + j +k ,thenfind (a x b).(b xc).

Find thevector areaand theareaof thepardlelogramhavinga =i + 2j —k and

b=2i - | + 2k asadjacent sides.

If axb=bxc #0,thenshowthat a + ¢ = pb, where p issomescalar.

Let a and b bevectors, satisfying [a] = |b| =5 and (a, b) =45°. Findtheareaof thetrianglehaving
a-2b and 3a+2b astwoof itssides.

Find the vector having magnitude ./ unitsand perpendiculartoboth 2i — k and 3j —i -k .

Find a unit vector perpendiclar to the plane determined by the points P(1, -1, 2),
Q(2,0,-1) and R(0, 2, 1).

Ifa.b = a.candaxb=axc, a#0,thenshowthatb=c.

Find a vector of magnitude 3 and perpendicular to both the vectors b =2i - 2j +k and
c=2i +2] +3k .

If |a| =13,|b] =5 and a. b = 60, thenfind |a x b|.

Find unit vector perpendicular to the plane passing through the points (1, 2, 3),
(2,-1,1) and (1, 2, -4).

If a, band c represent the vertices A, B and C respectively of AABC, then prove that
(axb) +(bxc) +(c xa) istwicetheareaof AABC.

If a=2i +3j +4k, b=i +] —k andc=i — j +k, then compute a x (b x c) and verify
that itisperpendicualr to a.

If a=7i -2j +3k,b=2 +8k and c=i +j +k, then compute axb, axc and
a x (b + c). Verify whether the cross product isdistributive over vector addition.

Ifa=i+j+k,c=j —k,thenfindvectorbsuchthat axb =canda.b =3.

a, b, ¢ arethreevectorsof equal magnitudes and each of themisinclined at an angle of 60°tothe
others. If [a +b +c| =6, thenfind|a .

For any two vectorsaand b, show that

(1+ |a|2)(1 - |b|2) =[1-ab’+fa +b +a xb.
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7. If a, b, ¢ areunitvectorssuchthat aisperpendicular to theplaneof b, c and the angle betweenband

T .
cis . thenfind a + b +cf.

8 a=3i -j+2k,b=-i +3j +2k,c =4i +5]j -2k andd =i + 3j + 5k, thencompute
thefollowing.
(i) (axb)x(cxd)and (i) (axb).c-(axd).b.

5.10 Scalar tripleproduct

In this section we introduce the concept of scalar triple product of three vectors and discussits
propertiesand itsgeometrica interpretation.

5.10.1 Definition

Let a, b and ¢ bethreevectors. Wecall (ax b).c, the scalar triple product of a, b and ¢
and denote thisby [a b ¢] . Usually [a b ¢] iscalled box [a b c].

5.10.2 Note: (axb).c =0 when

(i) oneof a, b,cis 0 or
(i) a,bor b,c or c,a arecollinear vectors or

() cisperpendiculartoa x b.

5.10.3 Theorem: Let a,b and ¢ be three non-coplanar vectorsand OA = a, OB = b and
OC=_c. Let V bethevolume of the parallelopiped with OA, OB and OC as coterminus edges. Then

(i) (axb).c=V,if (a b, c) isarighthanded system.
(i) (axb).c= -V, if (a b, c) isaleft handed system. axb

Proof : (i) Consider thepardleopiped OADBFCGE having OA, C =
OB and OC ascoterminusedges. Assumethat a, b, ¢ isright N

handed system. Draw CM perpendicular to the plane determined
by OA and OB (i.e,a and b) and N be the foot of the \ :
perpendicular to the support of a x b (seeFig.5.22). Let n be b
the unit vector in the direction of a x b so that by definition of a M
ax b, wehave (a, b, n) isaright handed system. Let 0 bethe 4 D
anglebetween ax b and c. i.e, 6 = OCON. Fig. 5.22

Y
os]
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V = (Areaof thebaseparallelogram OADB) x (height of the vertex C from the base)
= |axb|(CM) =|a xb|(ON). - (1)

But from AOCN, ON = (OC) cos9
0 Vv =|axb|(OC)cosd (from (1))
= |axb]||c|cosd
= (axb).c.
ThusV = (axb).c=[ab].
(i)  Suppose (a, b, c) isaleft handed system.

O (a, by c) isaright handed system (seenote 5.7.2). But the volumes of the corresponding
paralelopipedsare same.

OV =(x b){ cF- Ha b).cH
O(x b).e=- V.
5.10.4 Theorem: For any three vectorsa, b and c
(axb).c=(bxc).a =(c xa).b thatis, [abc]=[bcd cal.
Proof : If oneof a,b and c is O or any two are collinear, the equality holds (by 5.10.2).
Assumethat (a, b, c), (b, ¢, a) and (c, a, b) formright handed systems.
0 (axb).c =(bxc).a =(c xa).b = volumeof the parallelopiped = V.
If dl thetriadsform left handed systems, then
(axb).c =(bxc).a=(c xa).b=-V
Thus| (axb).c =(bxc).a =(c xa).b

5.10.5 Theorem : If a, b, c areany three vectors, then (a x b).c = a.(b xc). (that is, in a scalar

triple product, the operations dot and cross can be interchanged)
Proof : From Theorem5.10.4, wehave

(axb).c =(bxc).a =a.(bxc) (. dotproductiscommutative)
5.10.6 Theorem: If a, b, c arethreenonzero vectorssuch that notwo arecollinear, then [a b c] =0
ifand onlyif &, band c are coplanar.
Proof: SQuppose a, b and ¢ arecoplanar. Snce a x b isperpendicular to the plane determined by
a and b itisalso perpendicular toc. Hence (axb).c =0.

O [abck oO.
Conversely assumethat [a b c| =0 i.e, (axb).c =0.
O & b isperpendiculartoc. But a x b isperpendicular tobotha and b.

Oa b ispependicularto a, b and c.
O a, b, ¢ arecoplanar.
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5.10.7 Corollary

Four distinct points A, B, C and D are coplanar if and only if [AB AC AD] =0.
Proof : A,B,CandD arecoplanar ~ thevectorsAB, AC and AD arecoplanar
- [AB AC AD] =0.
5.10.8 Theorem: Let (i, I k) be orthogonal triad of unit vectors which is a right handed system.
Let a=ai+a,j+azk, b=Dbi+b,j +bk and c=ci +c,] +ck.

a & &
Then[abc] =|by b, byl
G & G
Proof: Itisknownthat ax b =(a,b; —a,b,)i —(aby, —ash)j Hab, —a,b)k
Ofabc (¢ b).c
= (apby —ahy)c —(ahs —adhy)c, +(ab, —ab)c
& & g
= | b by

G & G
5.10.9 Corollary

Let a=ai +a,j +ak, b=hi +bj +bk and c=ci +c,j +ck. Then a b, care

a4 & &
coplanar ifand onlyif | b, by =0.

G G
Proof: Followsfrom Theroems5.10.6 and 5.10.8.

5.10.10 Corallary

Let a, B, y be three noncoplanar vectors and a=aa+a,p +ay,
b=ba+b, p+by,c=ca+c,p +cgy. Then a, b and c are coplanar if and only if
q & &
b b, by =0

v s Bxy yxa axp

Proof : FromTheoren59.8, axb=|a a, a
b b b
= (3~ asb,) (B xv) ~(aby ~ah) (v xa) +(ab, ~a,b) (a xp)
Ofabck (a b).c
= (a2l —a3b,) (B x7) . (c0) - (abs—ash) (v xa). (c,B)
+(ab, —a, b)) (o xB) . (c37)
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= aazba _a3b2)cl _(a1b3 _asbl) G +(a1b2 —azbl)ng[aﬂy],
(- [epr]) =[8rd r24)

a & &3
OfabcE b b, byl [apy].
G & G
Since a, B, y arenon-coplanar, [a B y] # 0.
q & &3
0 |a, b, c arecoplanar vectorsif andonly if by b, b,|=0.
G & G

1
5.10.11 Theorem: The volume of a tetrahedron with a, b and ¢ as coterminus edges is 6 ‘[abc]‘_

Proof: Let OABC beatetrahedronand OA =a, OB =b, OC =c (Fig.5.23). Let V bethevolume
of thetetrahedron OABC. By definition, thevolumeV isgiven by

V= % (areaof thebase A OAB) (length of the perpendicular from Ctothebase A OAB).
CN istheperpendicular fromC to AOAB andCM istheperpendicular from C onto the supporting

lineof a x b sothat CN =OM = Length of the projectionof conto a x b
_|(axb).¢| [abc]|

axp " jaxp
Areaof AOAB = M
oved b ol
1
=5 ‘[abc]\

5.10.12 Corallary

The volume of the tetrahedron whose verticesare A, B, Cand D is %‘[DA DB DC]|.
Proof: SinceDA, DB and DC are coterminusedges of thetetrahedron ABCD, from the above theorem,

itfollowsthatitsvolumeis% [bA DB DC]|.
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5.11 Vector equation of a plane - different forms, skew lines,
shortest distance -plane, condition for coplanarity etc.

In Chapter 4, we havediscussed about the parametric vectoria equation of aplanein variousforms.
Inthis section we obtain the vector equations of aplane by using dot and crossproducts. Also, weintroduce
the concept of skew lines, the shortest distance between two skew linesand deriveaformulafor the shortest
distance. Inthisconnection, wefix theorigin of reference’O’. a isa point meansaisthe position vector
of apoint withrespecttoorigin‘O'.
5.11.1 Theorem: Thevector equation of a plane passing through the point A (a) and parallél to two
non-collinear vectors b and ¢ is [rbc] =[abd .
Proof: Let a represent the point A and P(r) be any point in the plane. We may assume
that A # P.

Pliesintheplane

O ThevectorsAP, b, carecoplanar
O [APbc] =0 (by Theorem5.10.6)
0 AP.(bxc)=0
O (- a).(B c¥ O
O r.(b cF a(& c)
O [rbck [abd.
SupposeP(r) isany pointinthespacesuchthat [rbc] =[abd .
Intheabove argument, if weretrace the steps backwards, wewill have [AP b ¢] = 0.
Thusthevectors AP, b, c arecoplanar. Hence P liesintheplane.
5.11.2 Theorem: The vector equation of the plane passing through points A(a ), B(b) and
parallel to thevector ¢ is[rbc| +[rcd =] abq .
Proof: Let P (r) beany point. Wemay assumethat P # A .
ThenP liesintheplane = thevector AP x AB isperpendicular tothe plane
= AP x AB isperpendicular tothevector c.
= (APx AB).c=0.
= AP.(AB x ¢) = 0 (Theorem5.10.5)
= (r —a).((b—a)xc) =0
= (r-a).(bxc+cxa)=0
= [rbc]+[rcd =[abd .
5.11.3 Theorem: The vector equation of the plane passing through three non-collinear points A(a),
B(b) and C(c) is [rbc] +[rcg +ral} q ab¢ .
Proof: Let P(r) beany point.
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Thefour pointsA, B, C and Pare coplanar
= Thevectors AP, AB and AC arecoplanar
- r—a,b-aandc—a arecoplanar.
- [r-ab-ac-a =0
= (r-a).(b-a)x(c-a)=0
= (r-a).{bxc +axb+cxg =0
= r.[bxc+cxa+axb|l 5[abd
= [rbc]+[rcd +[ral} {ab¢.

5.11.4 Theorem: The vector equation of the plane containing the line r =a + tb, tOR and
perpendicular totheplane r.c =q is[rbc| =[abd.

Proof: Fortheplaner. c = q,thevector c isanorma. Sincetheplanecontainstheline r =a +tb,it
passesthrough thepoint a andisparallél to thevectors band c.

0 By Theorem5.11.1, thevector equation of theplaneis[r bc|] =[abd .
5.11.5 Skew lines, Shortest distance and Cartesian equivalents.

If twolinesin spaceintersect at apoint, then the shortest distance betweenthemiszero. Also, if two
linesin spaceare pardld, then the shortest distance betweenthem is the perpendicular distance or thelength
of the perpendicular drawn from any point on one of thelinesonto theother line.

Inaspace, therearepairsof lineswhich are neither intersecting nor parallel. Suchapair of lines is
caledapair of skew lines. Thus, twolinesarecalled skew lines, if thereisno plane containing boththe
lines
5.11.6 Example

Consider aroomof sizel, 3, 2unitsalong X, Y and Z axesrespectively. (Fig. 5.24).

z
Theline GE that goesdiagonally acrosstheceiling |

and theline DB passing through one corner of theceiling
directly above A, goesdiagonally downthewall. These
linesare skew linesbecausethey arenot paralel and a so
never meet.

By the shortest distance between two lineswemean
thejoin of apoint on onelinewith apoint ontheother line
sothat thelength of the segment so obtainedisthesma lest.
Inthe case of skew lines, theline of the shortest distance
will be perpendicular to both thelines.
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5.11.7 Distance between two skew lines

LetL, andL,betwoskew lines, asshowninFig.5.25, with equations.

r=a, +Ab,. ~_ T

and  r=a,+pb, [0

Let Shethepoint onL, withpositionvector a, and let
T be the point on L, with position vector a,. Then the
magnitude of the vector of shortest distance will beequal to
that of the projection of ST dongthedirectionof the lineof [ -
shortest distance. Fig. 5.25

If PQ s thevector of shortest distance between L, and L, thenitisperpendicular to both b, and b,

_ bixb,

. ThenPQ =dn, wheredis themagnitude
|y xb, |

Theunit vector n along PQ would thereforebe n

of the shortest distance vector.
Let 6 betheangle between ST and PQ. Then
PQ=ST . |cos 6]

But cosO = ‘M
|PQI|ST |

dn.(a, —a)
d ST
_|Bixby) (@ -ay)| oo bixb,

ST oy xb,| | |, xb, |

Hencetherequired shortest distanceis

, since ST =a,—a,.

d=PQ = STicos 6] = (bl"tl‘zbi;(izl'al) .

5.11.8 Cartesian form
Theshortest distance between thelines
:X_Xl:y_ylzz_zl and |2:X_X2_y_y2_z_22

& by G 8 b, C
=% YooY &4

& by G

) b, G

IS .
J(be, ~b,e)? +(ca, —coa)? +(ab, —ah)’

I
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5.11.9 Plane passing through the inter section of two given planes

Let N, and N, betwo given planesgiven by theequationsr .n, =d, and r.n,=d, respectively. The
position vector of any point on theline of intersection must satisfy both the equations (Fig. 5.26).

A I1,
&

Fig. 5.26

If tis the position vector of apoint ontheline, then
t.n,=d and t.n,=d,

Therefore for all real valuesof A, wehave
t.(n,+An)=d +Ad,

Sincetis arbitrary, it satisfiesfor any point ontheline. Hence, r.(n, +An,)=d, +Ad, represents
aplanell, whichissuchthat if any vector r satisfies both the equations 1, and I, it also satisfiesthe
equation of 1, i.e., any plane passing through theintersection of theplanes r.n, =d, andr .n,=d, hasthe

equation r.(n, +An,) =d, +Ad,.
5.11.10 Cartesian form
Inthe Cartesian system, let

n,=ai+bj+ck, n,=aj+b,j+ck, r=xi+yj+zk
Then x (a, + Aa) +y(b, +Ab)) + Z(c, + Ac)) = r . (n +An) =d, + Ad,.
or (ax+by+cz-d)+Aax+by+cz-d)=0
istherequired cartesian form of the equation of the plane passing through the intersection of the given planes,
A being the parameter.

5.11.11Condition for coplanarity of twolines

Letthegivenlinesbe
r=a, +Ab, . (1)
and r=a,+ub, .. (2

If line (1) passesthrough the point A with position vector a, andisparalel tob, and line(2) passes
throughthe point B with position vector a, andisparallel tob,, then AB=a,-a..

Thegiven linesarecoplanar if andonly if AB isperpendiculartob, > b,.
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i.e, AB.(b,*b)=0 or (a,- a).(b*b)=0.
Cartesanform
Let (x,,Y,,z) and (X, Y,, z) bethecoordinatesof the points A and B respectively.
Let(a, b,
AB = (X, =X)i+(y,-y) ] +(z-2)k
b=ai+bj+ckand b,=ai+bh,j+ck
Thegivenlinesarecoplanar if andonly if AB. (b, % b,) =0. Inthecartesianform, it canbeexpressed

c,) bethedirectionratiosof b, and(a,, b,, c,) bethedirectionratiosof b,. Then

=X Yoo L4
a by g [=0.
& b, G
5.11.12 Perpendicular distance of a Point from a plane

Vector form : Consider apoint Pwith Position vector a and aplanell, whoseequationis r.n=d.
(Fig.5.27(a), (b)).

74 2
|_|2 I_Il I_IZ
P o|Q P
I_Il
N a
NI
d__.{» e d ~ N >\
O)= U U -Y Y @ L
X
X
Fig. 5.27(a) Fig. 5.27(b)

Consider aplanerl, through Pparallel totheplane IM,. Thusnisalsoa unit vector normal tor1, .
Henceitsequationis(r—a).n=0 or r.n=a.n.
Let Q bethefoot of the perpendicular fromPto M, N bethefoot of the perpendicular fromtheoriginto I,
and N bethefoot of the perpendicular from N’ to .. ThenO, N', N arecollinear.

Thusthedistance ON' of thisplanefromtheoriginis|a. n|. Thedistanceof Pfromtheplanell,
(Fig.5.27(a)) is PQ, ON-ON' = |d — a.n |whichisthelength of the perpendicular from apoint atothe
givenplane. Wemay establishsimilar resultsfor Fig. 5.27(b).
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5.11.13Note: (i) If theequationof aplanelisintheform r.N=d, whereN isnormal tothe plane, then
|[aN-d|

N|
(i1) Thelengthof the perpendicular fromoriginOtotheplane r .N=d is % since a =0.

the perpendicular distance of thisplanefromapointa is

5.11.14 Cartesian form

Let P(x,, y,,z) bethegiven point with position vector aand Ax+ By + Cz=D bethe cartesian
equation of thegiven plane. Then

a=xi+yj+zk

N=Ai+Bj+Ck
Hence, from 5.11.13(i), the perpendicular distancefrom Ptotheplaneis

(i +y;j +2k) . (A +Bj +Ck) -D| _|Ax +By, +Cz D|
JAZ+B?+C2 | JAZ+B2+C? |

5.11.15 Angle between alineand a plane

Vector form : Theanglebetween aline and aplaneisthe complement of the angle betweentheline
and normal tothe plane (Fig. 5.28).

A
Normal ==
= Line
(&
90° - ¢

/ —

Fig. 5.28

If the equation of thelineis r =a+ Ab and the equation of theplaneis r . n =d, thentheangle 0
between the lineand the normal to the planeis cosB = ‘l t?l |nn |

Hencethe angle @between theline and the plane isgiven by (90° - 6).

0 sin@= sin(90°-8) = cosO = or @ =sin!

|bl[n]

|bl[n]
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5.12 Vector triple product - results

In section 5.10, we have introduced the concept of scalar triple product of three vectors and in
section 5.11 studied some of itspropertiesand itsapplicationsin deriving the equation of aplanein different

forms. Supposea, b, ¢ arethreevectors. Then (a X b) x ¢ iscalledthevector triple product or vector
product of three vectors. In thissection we study some properties of the vector product (a X b) xc of
three vectors a, b, c.

5.12.1 Theorem: Let a, b, c be threevectors. Then
(a.c)b -(b.c)a

@ (axb)xc
@) ax(bxc)=(a.c)b—(a.b)c
Proof

(i) Without lossof generality, we may assumethat aand b arenon-collinear vectorsand c isnot parallel to
ax b, asotherwise(a x b) xc =0 =(a.c)b —(b.c)a. Fix theorigin‘O’. Let OA = a, OB =b.
We consider the plane OAB as XY -plane. Let i betheunit vector inthedirectionof OA and j beunit
vector perpendicular toi inthe XY-plane. Fix the unit vector k perpendicular to xy-plane such that
(i, j,k) isanorthogonal triad of unit vectorsforming aright handed system. Then, wecanwritea=aji,

b=Dbi+b,j and c=cji +¢c,] +ckK.
O(x bx & (abkk (ci +cj+ ck)
=(aba)i - (abo)i
(a.c)b-(b.c)a=aq (bi +bj) -(bG +bc)ai
= (acby) | — (abycy)i
O (x bx c= (a.c)b- (b.c)a

(i) ax(bxc) =—((b xc) xa)
= - Hb.a)c - (c.a) by
=(a.c)b-(a.b)c.

5.12.2 Note: In general, the vector product of three vectors is not associative.

5.12.3 Corollary: If a, b arenon-collinear vectorsand b is perpendicular to neither a nor toc,
then (axb)xc =a x(b xc) ifandonlyif thevectors a and ¢ are collinear.
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Proof : Suppose (ax b) xc =a x(b xc)
O(a.c)b (b.c)a& (ac)b- (a.b)c
O (b.c)a (ab)c
O a, ¢ arecollinear vectors.
Conversely suppose a, carecollinear vectors,and c = A a .
O(x bx e a (bx cF (ax b (Aa)- ax (bx Aa)
- ¥ faxb) xa - (a x(o xa)]
= AHaxb) xa —(a xb) xag(~-b xa = —(a xb))
= A (0) =0.
5124 Theorem: |If b isperpendicular to both a and c, then
(axb)xc = ax(bxc).
Proof : Supposeb isperpendicularto aandc.
Then a.b=0=b.c
(axb)xc=(a.c)b-(b.c)a=(a.c)b
and ax(bxc)=(a.c)b-(a.b)c =(a.c)b
Thus |(axb)xc =a x(b xc)

a.c a.

5.12.5 Theorem : For any four vectorsa, b,candd (ax b).(c xd) = b

‘ and in particular
(axb)® =a?b? - (a.b)’
Proof: (axb).(cxd) = a.(bx(c xd)) (by5.105)

= a.H{b.d)c - (b.c)dg (by5.12.1)

= (a.c) (b.d) - (a.d)(b.c)

_ |la.c a.d
b.c b.d
Intheaboveformula if ¢ = a, and d=b, then
a.a a.b
axb).(axb)=
( ) ( ) b.a b.b‘

(a.a)(b.b) - (a.b)2

= a’b? —(a.b)z.
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5.13 Solved Problems

1. Problem: Provethat thevectors a = 2i-j +k,b =i —=3) -5k and c=3i -4j -4k are
coplanar.

2 -1 1
Solution: (@xb).c=|1 -3 -5/ (by Theorem5.10.8)

3 -4 -4

=2(12-20) + (-4+15) + (-4+9)
=-16+11+5=0
0 a, b, c arecoplanar vectors (Cor. 5.10.9).
2. Problem: Find the volume of the parallelopiped whose coterminus edges are represented by the

vectors 2i —3j +k, i —j +2k and 2i + j — k.
Solution: Let a=2i -3j +k, b=i —-j +2k and c=2i + | -k
2 -3 1
(axb).c=|1 -1 2
2 1 -

21-2)+3(-1-4)+1(1+2
=-2-15+3=-14

0 volume = |(axb).c| =14,

3. Problem: Ifthevectorsa=2i-j +k,b =i +2j -3k and c =3i + pj +5k are coplanar,
then find p.

Solution: Itisknownthat a, b, carecoplanar if andonly if [a b ¢] = 0.

(Theorem 5.10.10)
2 -1
00= [abc]= |1 2-3 _ 545430 + 1 (5+9)+(p-6)
3 p

20+6p +14 + p—6 = 7p+28
UpF- 4.
4. Problem: Showthat i x (axi) +j x(a xj) +k x(k xa) =2a for any vector a.
Solution: i x(axi)=(i.i)a-(i.a)i =a-(i.a)i

jx(@xj)=a-(i.a)j

kx(axk)=a-(k .a)k
Ok (a i} K (x jp k< (ax k)= 3a-Hi.a)i +(j.a)j +(k.a)ky

=3a-a=2a
(ra=x +yj +zk O x ia ¥ a.j,z ak).



Product of Vectors

5. Problem : Provethat for any three vectorsa, b, c, [o+c c+a a+b| =abd.

Solution: [b+c c+a a+b

= (b+c).{(c +a) x(a +b}
(b+c).{cxa + c xb + a xb
b.(cxa) + b.(cxb) + b.(a xb)

+ c.(cxa) + c.(cxb) + c.(a xb)
[bca] +0+0+0+0 +cal
2[abd].

6. Problem: For any threevectors a, b, ¢, provethat [oxc cxa a xb :[aqu.
Solution: [bxc cxa axb] =(b xc).{(cxa) x(a xb}
= (bxc)[{(c xa) By a ~{(cxa) @} b]
=(bxc).{[cabla -[cadB
= (bxc).a[calb] :[abcjz.

1
7.Problem: Let a,b and ¢ beunit vectorssuchthat b isnot paralld to ¢ and ax (b xc) =§b.
Find the angles made by a with each of b and c.

1
Solution: Zb=ax (bxc)=(a.c)b —(a.b)c
Sinceb and c are non collinear vectors, equating corresponding coefficients on both sides,
1
a.c:E anda.b=0.

Oa makesangleg with ¢ andisperpendicular tob.

8.Problem: Leta=i+j+k, b=2i -j +3k, c=i - j and
d=6i +2j +3k. Express d, intermsof bxc, cxa and axb.
1 1 1
Solution: [abc] =2 -1 3
1 -1 0

=1(0 +3) -1(0 -3) +1(2 +1) =5.
d.a=11, d.b=19,d.c=4
If d=x(bxc)+y(cxa)+z(a xb), thenwehave
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« = d.a y= d.b ,= d.c '
[ab(]’ [abq]’ [abd]
TR

O x , , Z
5y 5 5

0d :%1(3i +3j -k) +1—59(—i -j +2k) +g(4i -j =3k).

9. Problem: For any four vectors a, b, ¢ and d, prove that
(bxc).(axd)+(c xa).(b xd) +(a xb).(c xd) =0.
Solution: Wehave (axb) [lcxd) =a (b x(c xd))

= al{(bld)c-(bld)d)

aléd ald
— (ald) (b)) —-(ald)(bd) =
= (ald)(bld)—(ald)(bld) bl b@‘.
ba bd N cb cd N ac ad
ThenL.H.S. = ca cd| |ab ad| |bc bd

= (b.a)(c.d) =(b.d)(c.a) +(c.b)(a.d) —(a.b)(c.d)
+(a.c)(b.d)-(a.d)(b.c) = 0.
10. Problem: Find the equation of the plane passing through the pointsA = (2, 3, -1), B =(4, 5, 2)
and C=(3,6,5).
Solution: Let ‘O’ betheorigin. Let r =xi + yj + zk bethepostionvector of any point P intheplane
of AABC. Thenthevectors AP, AB, AC arecoplanar.
O [AP AB AC] =0.
Now AP = (x-2,y-3, z+1)
AB =(2,2,3) and AC = (1,3,6)
X-2 y-3 z+
O[APABACE @ |2 2 3| O
1 3 6
e, Xx-2)(12-9) -(y-3) (12-3) +(z+1)(6-2 =0
i.e, 3x—-9y +4z +25= 0.
11. Problem: Find the equation of the plane passing through the point A = (3, -2, —1) and parallel
tothevectorsb = i —-2] +4k andc=3i +2j —-5k.
Solution: Let r = xi + y|j + zk betheposition vector of any point P inthegiven plane.

Then [r-a b c] =0 (Theorem5.11.1)
XxX-3 y+2 z+
o1 -2 4
3 2 -5

= 0.
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0 (x—-3)(10-8) - (y+2) (-5-12)+(z+1) (2+6)=0
0 2x+17y +8z + 36=0.
12. Problem: Find the vector equation of the plane passing through the intersection of the planes
r.(i+j+k) =6 andr. (2 +3j +4k) = -5 and the point (1, 1, 1).
Solution: Here n =i+ j+ k andn,=2i + 3j + 4k; Alsod, =6 andd,=-5.
Substituting thesevauesintherelationr.(n, + An.) =d +Ad,, weget
r.J(i+j+k+A2 +3j+4k)] =6—-5A
orr.[(L+2N)i+(1+3N)j+(1+4N\)K] = 6-5A, (1)
where A issomerea number.
Taking r=xi+yj+2zk, weget
Xi+yj +zKk).[(A+2N)i+ (1 +3N)j+ (1 +4NK] = 6 -5\
or (1+2\)x+(1+3\)y+(1+4A)z= 6-5A
or (X+y+z-6)+A(2x+3y+4z+5)=0 (2
Sincethisplanepassesthrough thepoint (1, 1, 1), it should satisfy thisequation (2). Then
3

(1+1+1-6)+A2+3+4+5)=0[= w

Substituting thisvalueof A in equation (1), weget

% Sdi R B kg
H_I 23 Ekﬁ—% or r.(20i + 23j + 26k) =69, whichistherequired vector

equation of theplane.
13. Problem: Find the distance of a point (2, 5, —3) fromtheplane r.(6i —3j + 2k) = 4.
Solution: Here a=2i+ 5] -3k, N=61 —3j+2k; andd=4.

0 Thedistanceof thepoint (2,5, —3) fromthegiven planeis

[(2i +5j —=3k) .(6i —=3] +2k) —-4| |12 15 -6 4| _13

|6i —3j + 2K | - \/36+9+4 '7-
14. Problem: Find the angle between the line T =% —T and theplane 10x + 2y - 11z= 3.

Solution: Let @be theanglebetween the given lineand the normal to the plane.
Converting the given equationsinto vector form, wehave
=(-i+3k) +A (2 +3j+6Kk)
and r.(10i + 2j — 11k) =3.
Here b=2i + 3+ 6k and n=10i + 2 — 11k.



Mathematics- 1A

_ (21 +3j +6k).(10i +2] -11k)
22+ P 162107 +27 4122
_|0]_8 o 4 mnnD80
7x15] 21 BZ_H
15. Problem: For any four vectors a, b, ¢ and d, (axb)x(cxd)=[acd]b -[bcd aand
(axb)x(cxd)=abd]c [abdd.
Solution: Letm=cxd
O(a by (o d)= ( bj m
- (am)b - (b.m)a
= (a.(c xd))b = (b.(c xd))a
[acd]b-[bcda
AgainLetaxb = n.
Then (axb)x(cxd)=nx(cxd)
= (n.d)c - (n.c)d
=((axb).d)c -((a xb).c)d '
= [abd]c-[abdd.
16. Problem: Find theshortest distance betweentheskewlines r = (6i +2j +2k) +t (i -2j +2k)
and r =(-4i —k) +s(3i -2 —2k).
Solution: Thefirgtlinepassesthrough thepoint A(6, 2, 2) andis A(6,2,2) —
parallel to the vector b =i — 2j + 2k . Second line passes

through the point C(—4, 0, —1) and is parallél to the vector
d=3i -2j -2k. (Fig.5.29).

b=
@ 22

A
Shortest distance= % (Theorem5.11.7)
-10 -2 -3
[ACbd]=| 1 -2 2/ =-108.
3 -2 -2
i k
bxd=[1 -2 2| =8 +8j+4k and|bxd| =12
3 -2 -2

ACbd
1 Shortest distance between theskew lines = ‘[ ]‘ = 108 =
b x d| 12
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1.
2.
3.
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12.
13.

14.
15.

16.
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Exercise 5(c)
Compute [i =j j-k k~=i].
Ifa=i-2j-3k,b=2i +j -k, ¢ =i +3j -2k ,thencomputea . (b x c).
If a=(1,-1,-6), b =(1,-3,4) and c=(2, -5, 3), then computethefollowing. (i) a. (bxc)
(i) ax (b xc) (i) (a x b) xc.
Smplify thefollowing
(i) (i —2j +3k) x(2i +j —k).(j +k)
(i) (20 =3j +k).(i =] +2k) x(2i +] +k)
Find thevolume of the parallelopiped having coterminusedgesi + j +k, i —j andi +2j - k.
Find t forwhichthevectors 2i - 3j +k,i +2j -3k and j -tk arecoplanar.

For non-coplanar vectors, a, b and c, determine pfor whichthevectorsa + b +c¢, a + pb +2c
and —a + b + c arecoplanar.

Determine A, for which thevolumeof the parallel opiped having coterminusedgesi + j, 3i — j and
3j + Ak isl16cubicunits.

Findthevolumeof thetetrahedron havingtheedgesi + j +k,i — jandi + 2j + k.

Let a, b and ¢ be non-coplanar vectorsand ¢« =a +2b +3¢c, f =2a + b —2¢ and
y =3a - 7c, thenfind [a B \.

Let a,b and ¢ benon-coplanar vectors. If [2a—-b+3c, a+b—-2c,a+b-3c]=A[abc], then
findthevaueof A.

Let a, b and ¢ be non-coplanar vectors. If [a+2b 2b+c 5¢c+a] =A[abc], thenfind A.
If a, b, carenon-coplanar vectors, then find the value of
(a+2b-c).Ha-b)x(a-b-c)g
[abc] '
If a, b, caremutually perpendicular unit vectors, then find thevalue of [ab c].
a, b, carenon-zero vectorsand aisperpendicular toboth b and c. If |a|=2, |b|=3, |c|=4

21 ,
and (b, c) = 3 , thenfind [[abc]|.
If a,b, careunitcoplanar vectors, thenfind [2a-b, 2b-c, 2c-4a].

If [ocd] +[cad]+[abd] =[ab c],thenshow that the pointswith position vectors
a, b,candd are coplanar.

If &, b and c are non-coplanar vectors, then prove that the four points with position vectors
2a+3b-c, a-2b+3c,3a+4b-2c and a - 6b + 6¢ are coplanar.
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a, b and c are non-zero and non-collinear vectorsand 6 # 0, isthe angle between b and c. If

(axb)xc :% 0] |c| @, thenfind sin®.
Find the volume of the tetrahedron whose verticesare (1, 2,1),(3,2,5), (2,—-1,0)and (-1,0, 1).
Showthat (a + b) . (b +¢) x(c +a) =2[abq].

Show that the equation of the plane passing through the points with position vectors 3i — 5j — Kk,
—i+5] + 7k and paralell tothevector 3i —j + 7k is 3x+2y-z=0.

Provethat a x Fa x (a xb)g =(a. a)(b xa).
If a, b, ¢ and d arecoplanar vectors, then show that (a x b) x (cxd) =0,
Showthat {ax b) x (axc)g.d =(a.d)[abc].

Show that a.H{b + ¢) x (a +b+c)g=0.

Find A inorder that thefour pointsA(3, 2, 1), B (4,A,5), C (4, 2,-2) and D(6, 5, —1) be coplanar.
Find thevector equation of the plane passing through theintersection of planes
r.(20+2-3k)=7, r.(2i +5 +3k) =9 and through the point (2, 1, 3).

Find the equation of the plane passing through (a, b, ¢) and parallel totheplaner . (i +j +Kk) =2.
Find the shortest distance betweenthelines r =6i +2j + 2k + A(i — 2] + 2k) and

r=—4i —k+pu3i -2 —2k).

Find the equation of the plane passing through the line of intersection of the planes
r.(i+j+k)y=21and r. (2 +3j —k) +4=0 and parallel to X-axis.

Provethatthefourpoints 4i +5j +k, —(j +k), 3i +9j +4k and -4i + 4] + 4k arecoplanar.
If a, b, ¢ arenon-coplanar, then show that thevectorsa — b, b + ¢, ¢ + a arecoplanar.

If a, b, ¢ aretheposition vectorsof thepointsA, B and C respectively, then provethat the vector
axb+bxc +c xa isperpendicular totheplaneof AABC.

. Showthat (ax (bxc)) xc =(a.c) (b xc) and

(axb).(axc)+(a.b)(a.c) =(@a.a)b.c).
If A =(1,-2-1),B=(4,0,-3),C=(1,2, -1) and D =(2, -4, -5), find the distance between
AB and CD.

fa=i-2j+k, b=2i +j +k, ¢c =i +2]j —k,finda><(bxc)md|(axb)xc|.

If a=i-2j -3k b=2 +j ~k andc=i +3j -2k,
verifythat a x (b xc) # (a xb) xc.
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5 Ifa=2i+j-3k,b=i -2j +k, c=-i +j -4k and d =i + j +k, then compute
[(a xb) x (e xd)].

6. If A= (1, a, az), B = (1, b, bz) and C= (1, c, 02) are non-coplanar vectors and

a a’ 1+a°
b b?> 1+b%|=0,thenshowthatabc+1=0.
c ¢ 1+¢

7. 1fa,b,carenon-zerovectors, then  |(axb.c)| =|al|b|c] = a.b=b.c =c.a =0,
8 Ifa=i-2j+3kb=2 +] +k,c =i +] +2k thenfind|(a xb)x c| and|a x (b xc).
9. If [a| =1 |b =1,|c| =2 and a x (a x c¢) + b =0 thenfind theanglebetweenaand c.

10. Leta=i-k,b=xi +j +(1 -x)k andc =yi +xj +(1 +x —y)k. Provethat the scalar
triple product [a b c] isindependent of bothx andy.

11. Letb=2i +j -k, c =i +3k. If aisaunitvector thenfindthemaximumvalueof [a b c].

12. Leta=i-j, b=] -k, ¢ =k —i.Findunitvector d suchthat a.d =0=[bcd].

< Concept of scalar product (or dot) of two non-zero vectorsaand b containingangle ‘6’ isintroduced
as|a] [b] cos @ whichisgeometrically equd to product of the magnitude of one of thevectorsand the
projection of the other onthefirst vector.

ab _ab+ab+abh

Akl S (5h

a=ai+a,j+ak, b=Dbi+bj+Dbkin(,j,k)systemand
a.b= ab +ahb,+ahb,

Right handed and | eft handed system of vectors. Definition of cross product of vectorsa and b
as ax b= (Jal|b|sin ) n where a, b are non-zero and non-collinear vectors, g istheangle

If 8 istheanglebetween a and b,then cos@ = where

between a and b and n isperpendicular to both a and b suchthat (a, b, n) isaright handed
System.
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< Cross product is not commutative, infact for any two vectors a and b, it is proved that
bxa=-(a x b).
i ]k
« Ifa=ajit+aj+akandb=bi+b,j+bkthen axb=& & &,
b b b
jax b
lal|b|

< |If g istheangle betweenthevectorsa and b, thensin g =

< Whiledetermining the angle between two vectors, considering a. bisawaysbetter.

< Introduced the concept of scalar triple product of three vectors a, b and c¢ as
(a x b) . ¢ and explained the (a x b) . c isequa to £V where 'V’ is the volume of the
parallelopiped with a, b, c ascoterminusedges according as(a, b, ¢) isaright handed systemor a
left handed system and thusV isthe numerical valueof (a x b).c.

< Introduced the notation [abc] for (a x b).c and provedthat [abc]=[bca] =[cab].
If a=ai+a,j+akb=hbji+b,j+bkandc=cji+c,j+ ck then

a a &
[abc] = B b, by,
G G G
< A necessary and sufficient condition for three vectors a, b, ¢ to be coplanar isthat [abc] = 0,
a a &
equivaently |b, b, by =0.
G G G

1
»  Volumeof atetrahedron withverticesA,B,CandD is 6 |[ABACAD] |

< Twolinesare said to be skew linesif there is no plane containing both the lines. The shortest

distance between two straight linesr =a +tb and r=c+sd is |( _lz)'(slx il
X
< Vector equation of theline passing through the point a and paralel tothevector b is

(r-a xb=0.
% (axb) xc=(@.c)b-(b.coaandax(bxc) =(.c)b -(a.b)c.
“ (axb).(de):‘Z'g b'j‘ and (a x b) x (¢ xd)=[acd]b-[bcd]a
o =[abd c-[abd]d.

p W r




Product of Vectors

Historical Note

Vector Analysis came into existence during the fourth decade of 19th century. Preceding the
advent of Vector Anays sthreeeventsmerit mention.
(i) Discovery and geometrical representation of complex numbers.
(i) Leibnitz ssearchfor ageometry of position.
(ili) Theideaof paraleogramlaw of forcesand vel ocities.
Josiah Willard Gibbs (1839 - 1903) work on Vector Analysiswas of major importancein pure

mathematics. Using the ideas of Hermann Grassmann (1809 -1877), Gibbs produced a system more
easily applied than that of Hamilton.

During 19th century, while Grassmann’s Hypercomplex numberswere hardly noticed, Hamilton's
quaternion calculusfell flat in the mathematical world. Except for Tait and Gibbs, the mgority of the
scientistspreferred to work with the old fashioned Cartes an methods. Even asrecently as1930'sthe
vector could hardly be said to have comeinto itsdomain.

Answers
Exercise 5(a)
l. 1. 60° 2. A=3
3. A=1 4. ¢=-3 +4) +4k
.02 0 1
5. Cos™ 6. A==
Hs/a6H 2
7. () 23 + j +k), 243, (i) 20 +j +k), j -k
8 r.(4i +7j-4k) =-6 0. CostE 2
- : | “f7axeo0
1, .
. 1 ¢§(3|+41) 2. 60° 3. {29

4. r.(3i - 2j - 2k) =2, Cartesianform: 3x— 2y - 2z— 2= 0and thedistance of thisplanefrom
theoriginisi
V17’
1. 2. £ 7J33(i = j - k)
Exercise 5(b)

. 1.9 2. yJ210 3. =2(2i +5j +11k)
4. p=12 50 6. x2+y2
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. 2.

.d =%

—6i - j -6k

3

i%(—?:i +2j - 6k)

. —54

+(i +j +2k)

25

ax((bxc)=2i +4] -4k

3i - 4j -5k, 52
(2i +j +k)

+

- S

+

(3 +j)

5

axb=-16i -50j +4k,a xc = -5 4] 49k,
ax(b+c) =-21 -54j +13k

:—13(5i +2j + 2k)
(1) 1201 +304] + 424K (ii) -80

0

()0,
() 12,
p=2
A=-3
1243

2J2
3

(i) -12

. 1. (38i + 68 + 3k) = 153

x+y+z=a+b+c

. 4/3

514, \/54

51

(i +j - 2k)

5.

1

Exercise 5(c)

2.
(i) 29i - 67) +16k,
S.
8.
12.
16.

14.

-20

(iii) — 40i +62j + 130k

5
A= %4
A=12

9

-0i - 6] -3k, V174

30° or 150°

6.
9.
13.

11.

15.

S.
1.
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Chapter 6

» »

“The acharya (master) title (in astronomy) is offered
on him who has acquired sufficient knowledge of
Trigonometry”

- Bhaskaracharya

I ntroduction

In the earlier classes we have constructed in
geometry, triangles, quadrilatera s, pentagons, hexagons
andsoon. All thesefiguresaregenerdly cdled aspolygons
with n sides. When n=5, itiscalled apentagon, when
n=6, itiscalled ahexagon, whenn=10 itiscaleda
decagon etc. Onthesamelines, when n=3, wecan call
thepolygonas ‘trigon’ (instead of ‘triangle’). Theword
‘trigonometry’ canberead as ‘trigon-o-metry’. Thisword
isderived from two Greek words

(i) trigonon (ii) metron

Theword ‘trigonon” meansatriangleandtheword
‘metron’ means ameasure. Thus trigonometry is the
science that deals with measurement of triangles.
Trigonometry has great use in measurement of areas,
heights, distancesetc.

Varahamihira
(505 - 587)

Varahamihira, also called Mihira,
was an astronomer-mathematician,
born in Ujjain. Varahamihira’s
picture is found in the Indian
Parliament along sde Aryabhatta’s,
of whom he was a follower. He was
considered to be one of the nine
jewels (Navaratnas) of the court of
legendary king Vikramaditya.
Varahamihira discovered Pascal’s
triangle and worked on magic
squares. His most famous treatise
is ‘Pancha Sddhantika’ (575 A.D.).



inparticular.
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It hasmany applicationsin almost al branchesof sciencein genera and in Physicsand Engineering

To study properties of triangles, first we should learn properties of the angles of atriangle.

Though in geometry the angles of atriangle or aquadrilateral etc. are dwayslessthan two right angles,

in the study of trigonometry, we do not impose any restriction on the magnitude of an angle. It can be

any real number (positive or negative or zero).

According tothegreat mathematician ‘Euclid’, angleis ‘theinclination of two linesintersecting

atapoint’. Wecanformally defineangleasfollows.

An‘angle’ istheunion of two rays having acommon end
pointinaplane. Theamount of rotationin the planethat isnecessary
to bring one ray into the position of the other ray is called the
‘magnitude of the angle’. (seeFig. 6.1). Anangleisusually
denoted by 6, a etc.

Infigure6.1 angle AOB isB. OA iscaledtheinitial side
and OB iscalled theterminal sideof theangle 6. Inthe processof
rotation, OB will be collinear with OA but will have direction
oppositetothat of OA . At thisinstant the angleformed by thetwo

raysiscalled apositive straight anglewhichisshowninFig. 6.2.

A positive‘right angle’ isdefined ashalf of apositive straight
anglewhichisshowninFig. 6.3.

We havelearnt, in the previous classes, that there arethree

systemsfor the measurement of angles.
1. Sexagesmd systemor British system
2. Centismd systemor French system

3. Circular measurement

>¥

Angle 6
Fig. 6.1

#

AR

@]
Straight Angle

Fig. 6.2

w A
>Y

BA

Right Angle A
Fig. 6.3
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Inthe Sexagesimal system

lrightangle = 90 degrees (90°)

1 degree = 60minutes(60')

1 minute = 60 seconds (60" )
Inthe Centismal system

lrightangle = 100 grades (1009)

1 grade = 100minutes(100')

1minute = 100 seconds (100" )

Inthecircular measure, oneradian isdefined asthe amount of the angle subtended by an arc
of length*r’ unitsof acircleof radius‘r’ unitsat the centre of that circle. Thisangleisindependent of the
sizeof thecircle(i.e., theradius of thecircle). Oneradianisdenoted by 1¢. Inthismeasure

2right angles=1¢

Though we have used the same name ‘minute' (or ‘ second’) in both * sexagesimal system’ and

‘centisimal system’, it can be easily observed that they are not same.

1 minuteinthe sexagesimal system = th of aright anglewhereas

90 x 60
1
1 minutein the centisimal system= ————th of aright angle.
el SIME YSEM= 100 x 100 ontend
The conversion from one system to the other can be easily done using the equation :
180 _ 200 _
D G R

whereD, G, R respectively denote degrees, grades and radians.

For example, to convert 30° into grades and radians, put D = 30 in the above equation and
find G, Rasfollows:

180 _200 _m Hence G= 10 _307m _ 7

30 G R enceb="3"""180 " &
g C
Thus 30° = ﬂ:i
3 6

6.1 Trigonometricratios- variation - Graphsand periodicity

a
Ardiois b where a, baretworea numbersand b isnon-zero. If wetakearight angledtriangle

with 8 asoneof itsacuteangles, usingthelengthsa, b, ¢ of thethreesidesof thetriangle (seeFig. 6.4) we

canformsixratios, namdy, —, —, —, —, —, —.



2 iscalled cosine®, — iscalledtangent 8 and soon). Now wegive
c a

the definition of thesetrigonometric ratiosformaly inthefollowing. Later,

weobservethat thisdefinitionisindependent of thetriangle.
6.1.1 Definition

Thesesix ratiosarecalled thetrigonometric ratiosof theangle 6.
Each of theseratiosisgiven aname (for example, b iscaled sineb,

M athematics- | A

Let 6 beareal numberand 0 < 6 < 2mr and r > 0. Consider arectangular coordinate
systemwith OX, OY asaxes. Draw a circlewith centre O and radius r. Choosea point P on the

circle such that the line OP makes an angle 6 radianswith o5 (positive X-axis) measured in
anti-clock wise direction (positive direction). See the figures below.

P(x,Y)

/ :
' £l
M
r

| I1|
\V | B
“‘a.____/

Fig. 6.5(iii)

Y Y
/ TN Py Py 1
) /&
r \'. 0
' o) - M| | M o |
Iﬁ\ II X \\ /}I
Fig. 6.5(1) Fig. 6.5(ii)
1 Y

f/ o
' 5O |
r
N P(x,Y)

Fig. 6.5(iv)
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Let (x, y) bethe coordinates of P with reference to the coordinate axes OX and OY. First
observethat

y=0e06=0 o0 0=1
x:Oc»e:Eor9=3_"_
2 2
Wedefinethesix trigonometricratiosof 6 asfollows:
Sneof 6 = ?y
. X
Cosineof 6 = v
Tangent of 6 = thei”lx#OorODEE,?’—r%
X 02 20
X
Cotangentof 6 = — when y # 0 or
9 y y 6 O{o, 1
r
Secantof 6 = —whmxiOorGDEE,:g—rE
X 02 20
r
Cosecantof 8 = gwhenyio or OD{O,n}

First we observethat these trigonometric ratios areindependent of thechoiceof r. Let ustaketwo
circleswithradii r, and r, with r, # r,. Wecantaker, < r,.

Y Y

// - i Pl(Xl’ yl) o b Pz(xz’ y2)
/ r . r,
:'/ 61 | [ 6 \
||I\\ (@) Ml ."I X I\II 0 M2 I’I|| X
\ / ’

\E_

Fig. 6.6() Fig. 6.6(ii)

Let P,(%, ;) beapointonthecirclewithradius r, andcentre'O’ suchthat angle XOR, = 0
and P, (%,, y,) beapointonthecirclewithradius r,and centre ‘O’ suchthat angle XOP, = 0. Draw
perpendiculars B, M, and P,M, from P, and P, respectively to OX. ThenthetrianglesOM P, and

OM_P, aresimilar (two right angled triangleswith sameangles 9, g -0, g). Hencethe corresponding

Sidesare proportional.
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oM M,R, OFR,
Thus we get (L LS R R D - R I

Hence we get ﬁ = ﬁ ﬁ = ﬁ ﬁ = ﬁ SO ONn.

Thustheabove definitions of thesix trigonometricratiosof 0 areindependent of thechoiceof r
(orthesizeof thetriangle).

The six trigonometric ratios of 6 defined above are briefly written as sin 0, cos 0,
tan 0, cot 0, sec 0, cosec 0 regpectively. Fromthesedefinitionswecan observethefollowing :

6.1.2 Note

1. snh =0 = vy

0« 6=0 or 0 =171.

2. cos6 =0 = x=0«=»6=E or 0:3—5.

31 x#0, then tan® = 3" and seco = —= .
cos 0 cos 0

4 cos 0 1

. Ify #0, then cot 6 = —— and cosec = ——.
sin 6 sin 6

5. Intriangle OMP, from Pythagorastheorem, x? + y? = r2.

= BF B -
Hence c0s’0 + sin®0 =1
Or 31y - .
If o0 EE ?E ,then cos 6 # 0 and henceon dividing both sidesby cos*0 , weget

1+ tan®0 = sec?0

Similarly, if 6 0{0, 7} , thenweget

1 + cot?’6 = cosec’d

6. Fromthedefinitionsof thesix trigonometric ratiosgivenin 6.1.1 we can makethefollowing important
observations.

(i) IfP(x,y)isinthefirst quadrant (but not on the coordinate axes), that is, if 0 < 0 <X then
x>0 and y>0. Henceall thesix trigonometricratiosare positive. (seeFig. 6.5(i)).
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(i) If P(x,y) liesinthe second quadrant (but not on the coordinate axes), that is, if g < 0 < m,then

x<0 and y >0. Hence sin 8 and consequently cosec 0 arepositive and other trigonometric
ratiosare negative (seeFig. 6.5(ii)).

(i) 1f P(x, y) liesinthird quadrant ﬁn <0 <3_2n§ then tan® and cot O arepositiveand othersare

negative (seeFig. 6.5(iii)).

(iv) If P(x,y)liesinfourth quadrant E%n <6< Zlﬁ, then cos6 and sec 8 are positiveand others

arenegative (seeFig. 6.5(iv)). Y
In all the above 4 cases P does not _ o AL -0
i i - sine> >
lie on coordinate axes, that is, (Siven Al
m _3m,[

%, T~ na A Zm
o0fo, ;] ~ [ 21, = -
The above facts can be easily tangTent>0 COSICne>0
remembered by the adjacent (Tea) (Cups)
diagram.

Thetrigonometric ratioswhich are positivein various quadrants can a so beremembered asfol lows.

I [ Il v

All Slvee Tea  Cups
@l dne tan Cos)

It isenough to know about the properties of sine, cosine and tangent of theangle 8 inthefour
guadrants asthe remaining trigonometric ratiosaretheir reciprocasonly.

Sofar, wehave defined trigonmetric ratiosonly when 6 [ [O, bi§ ] .
That iswe havetaken subsetsof [0, 21 asdomainsfor thesetrigonometric ratios.

Now weshall extend thedomainsof definitionsof thetrigonometricfunctions sin 0, cos 0 --- tothe
wholered number system.

6.1.3 Definition

For any real number X, let n bethelargest integer suchthat 2nr < x. (Thatis, n isthe

X
integral part of 5_[). Write 6 =x —2nm. Then 0<0 < 2. Wedefine
sinx =sin 0 :sin(x—znrr)
and cosx = cosf = cos(X —2n7T)




M athematics- | A

Notethat, forany 0 < 0 < 27 andfor any integer n, wehave

For example, sin

If the angle 6 (0

sin (2n7T+ 6) =sin 0
and CoS (2nn+ 6) =cos 0 etc.

= COoS inetc.
4

N ol

0 < 277) is measured in anti-clockwisedirection (starting from the initial

sdeOX), itisdefined aspositiveangleandif thesameangle 6 ismeasuredin clockwisedirection, itisdefined

asnegativeangleanditisidentified with —0. (seetheFig. 6.7.

by
Thetrigonometricratiosof ‘— 8 aredefined asfollows.
sin(-0) = sin (277 - 0) =‘Ty r
- = sind / : -
- THBET 2n—é\ -9 X
cos (—9) = cos(2n —9) =;( =cos 0 r
If DE’—T, 3—% , then tan (- 0) = —tan 6
02 20
Fig. 6.7
6.1.4 Definition
3

Theangles 0, g s

these angles are called “ Quadrant angles”.

S 2 it havetheir terminal sidealong either X-axis or Y-axis. Hence

: N T Mo, :
We havelearnt thevaluesof thetrigonometricratiosof theangles —, —, — inearlier classes. The
vauesof thetrigonometric ratiosof these anglesand the quadrant anglesaregivenin thefollowing table.

Table 6.1
Angle (6) n° e n° n° 3C
Trigonometric| 0€(0% [—(30% | —(45°%) | —(60%) | — (90%) In“(180% —(270°% [2n“(360°)
ratio 6 4 3 2 2
_ ojl1_ 1|1 \F J3 \F \/Z
O=|—| == |[— | —=,|—| —= |— 1= |— —
sin® 4|2 \/; 2 V4|2 \a 2 | ° ! 0
4 (3 \F 1 _[2|1 \F \F
1= |[—|—= |— | —==,[—| —= |— 0= [— —
cos® \/; 2 Va|J2 V4| 2 Va4 4 ! 0 1
1
tan © 0 7 1 J3 |Notdefined O |Notdefined O
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We can put any real number a in the form a:%T+6 aswdlasa =

00 @) ga and for someintegers n and m. Hence, inthefollowing tablewe give the change that occurs

N - . . nm i m
inatrigonometric ratio when applied ontheanglesintheform o +6 0 ﬁj EEH.When 0=0o0r o

some of thetrigonometric ratiosare undefined and hencewe givetheir values separately.

mm

Table 6.2
Angle () sna cos o tan o
Trigonometricratio
nm— 0 -1)™tsing (-1)" cos O ~tan®
nit+ 0 (-1)"sinB (-1)" cos® tan©
Tt n M =5
(2n+1) 5" 0 (-1)" cosB (-1)"snb coto
Tt
(n+1) 5 +0 (-1)"cos O (-)™'sing —cot 8

Thefollowing useful observations can be madefrom theabovetable.

1. If atrigonometricratioisapplied on ng +0 (n0Z),then

(i)  Whenniseven, thereisno changeinthetrigonometricratio (Ssgnmay be+or -).
(i)  When n isodd, the changein thetrigonometric ratio (Sign may be+ or —) isasindicated below

sine - cosine; tangent ~ cotangent; secant — cosecant .

2. Whether weget + or — sign intheanswer, should be decided by taking into consideration the quadrant
inwhichthe angle n7—2T + 0 lies.

Note: Weusualy takeanglesinradians. Incase, wetakean angle 8 indegreeswewrite 6°. If nothingis

mentioned we assumethat theangleisgiveninradians.

Example: Findthevaluesof

() sin 210°
(iv) sec510°
Solution

(i) sin210° =sin(180° +30°)

(or) sin 210° = sin(270° - 60°) = - cos60°

(i) cos585°
(v) cosec 750°

=-sin30° = -=.
2

(iii) tan 480°
(Vi) cot 765°

1
.

0 for some




M athematics- | A

(i) cos585° = cos(5400 + 45°) = cos (3(1800) +45°) = —cos45’ = -

-

(ili) tan 480° = tan(450° +30°) = tan (5(90°) +30°) = —cot30° = —/3.
90°

(iv) sec510° = sec(450° +60°) = sec (5 ) +60°) = —cosec60® = —

i

(v) cosec 750° = cosec(2(360°) +30°) = cosec30” =2.

(Vi) cot 765° = cot(2(360°) + 450) = cot 45° =1.

Now welist thechangesthat occur in varioustrigonometric ratioswhen gpplied on anglesof theform

n_znie,whereezo or m/2 and nOZ.

() snnm=0=tann 1 and hence cosecnrr, cot n 77 are undefined.

(i) cosnm=(-1)" =secn .
(iii) cos(2n + 1)% =0 =cot(2n +1)g and hence sec(2n + 1)% tan (2n + 1); are undefined.

(iv) sin(2n +1)g = (-1)" =cosec(2n +1)g .

6.1.5 Definition

T
If 8 isanyanglethen 5 0 iscalledits complement and 77 - 0 iscalledits supplement.

In other words, two angles 6, ¢ are said to be complementary angles if ¢ + ¢ :g and

T
supplementary angles if 6 +¢@=m. For example, the angles —,— are complementary

63
T 5
angles and 56 are supplementary angles.
6.1.6 Solved Problems
1. Problem: Find the values of
.. om . 0 Q]
(i) sm? (i) tan(855 ) (iii) secﬁlsga

Solution

. . 5 . T . I \/§
= snEm-—p=-Sn— =-——
(i) sn 3 % 3H 3 >
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(i) tan(855°) = tan (900° - 45°) = tan (5(1800) —450) = —tan 45° = 1.

(i) soagij= om g+ sz (or) + f = '~
2. Problem: Smplify

0) cot%—%ﬁ (i) tanEr23gﬁ
Solution

= —-tan 0
(i) tan-23 H——tarﬁ%%
- _tan §n+5_
3H
b l
= —tan = —t 2T —
H3H ks
_tanl[:\/g_
3
3. Problem: Findthevalueof sin? £+sin24—n sz@ sin’ 9—"
10 10 10 10
Solution: sin® - + sin24—n+ sin2@+ sin’ o
10 10 10 10
L, On0d, . Om 1 'ﬁ o
— sin? +sn’m— - +sm +Simg 1T —
HioH Hz 1] _E
= s L 4o L cosz— sin?2
10 10 10

2 (since, forany angle®, sin?6 + cos?6 =1).
4. Problem: If sin0 :g and O isnot in thefirst quadrant, find the value of cos 6.

Solution: 9n@ is poditiveand 0 isnotinthefirst quadrant. Hence® isinthe second quadrant and therefore
cosO < 0.
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Wehave
cos’0 +sin’ 0 =1 (seenote6.1.2(5))
0 cos’ & t+ sin’& + 1—6- 3
25 25

[0 cos&+ 3/5
O cos@ — 3/5 (since cos 6< 0).

5.Problem: If secO + tan0 zg, find thevalueof sin6 and determinethequadrantinwhich 8 lies.

Solution: Weknow that sec?0 — tan%60 = 1.

So secO — tan0 :% :§
secO + tan@ 2
E](secel- tanO)l- (secG— tan9)= %l— %
0 2sec& ED see0 1—3
6 12
Again, (sect + tan0) — (sec — tan6) _2_3_75
3 2 6
0 2tan& —B  tanb=— andsing= 2+ B_ 5
6 12 12 12 13

Since sec B is+ve and tan© is—ve, 6 liesinthelV quadrant.

21 3 7

6. Problem: Provethat cot— cot— .cot — ---cot— =1.
16 16 16 16
Solution: cot— cotz—n cotsn t7—n
16 16 16 16
O 27T O@ 4 1T
= t— cot— cot— cot C . cot cot—
16 160°H _69 16 75
g [l
= cot— . cot cot co
16 H_ E% H Ez
g 37T COtB— —% cot
O O 2717 2 m 3T
= ot— tan cot— tan cot— tan
16" " 16HH 1 75
=1.1.1.1=1.

7.Problem: If 3sin® + 4cosO =5, thenfind thevalue of 4sin® — 3cosH.

Solution: Giventhat 3sin® + 4cos0 =5
write 4sin® — 3cos® = a
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Squaring and addingweget (3sin6 + 4 cos)’ + (4sinB —3cosh)’ =5% +a?

0 af 25 9sin®® 16cos’® 24sin0 cos® 16sin?0 +9cos’0 —24sinfcos
=25sin% 0 + 25 cos?0 =25.

0 a& @ =a 0.
O04snG 3cos&® O.

8. Problem: If cos® + sin® =+/2 cos 0, provethat cos 6 —sin6 = J2 sin 0.
Solution: Given cos @ + sin 8 = /2 cos 0, then (JE - 1) cosO =sin 0.
Onmultiplying both sideshy (\/5 + 1),weget

(V2 +1)(v2 -1)cos 6 =(v2 +1)sin 0

0 cos& +/2sin® sin 0
0 cos® sin 6= /2 sin0.

9. Problem: Find the value of 2(sin66 + cos69) -3 (sin“e + cos“e).

Solution: 2(sin66 + cosee) -3 (sin49 + cos49)

2{(Sin2 0)3 + (cos2 0)3} - 3{(sin2 0)2 + (cos2 6)2}

2{(s n%0 + cos?0)’ - 3sin’0 cos0 (sin?0 + coszﬁ)}

-3 {(Sin20 + coszﬁ)2 - 2sin’0 cosze}

2(1 - 3Sin29cos26) -3 (1 -2sin®0 cos26)
=-1.
10. Problem: Provethat (tan6 + cotG)2 =sec’0 + cosec’0 =sec’0.cosec’d.
Solution: (tan® + cot)” = tan® +cot?d +2tand cot6
= tan’0 +cot’0 +2
(1+tan?0) +(1 +cot?0)

sec’f + cosec?0 .

1 4 1
cos’0  sin’0

Again, sec’0 + cosec’ =

_Sin®0 +cos’H 1

2 2
= = =sec”0 .cosec 0 .
cos’0 .sin’0  cos’0 .sin%0
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11. Problem: If cos® >0, tan® +sin® =mand tan® —sin® = n,thenshowthat m? - n?=4,/mn .

Solution: Giventhat m = tan0 +sin6® and n=tan0 —sin0.
By adding, weget m + n = 2tan®.
By subtracting, weget m—n =2sino .

On multiplying thesetwo equations, weget m* — n® =4 tan® sin 0
=4 \/tan?0 . sin%0 = 4\/tan29 (1 - 00529) (since cos 6 >O)
=4 \/tan?0® - sin’0 =4 J/mn .

tan 160° — tan 110° _1-A?
1+ tan 160° . tan 110° 20

12. Problem: If tan 20° = A, then show that

tan 160° — tan 110°
1+ tan 160° .tan 110°

_ ten (180° - 20°) — tan (90° + 20°)
~ 1+ tan(180° - 20°) . tan(90° + 20°)

Solution: LH.S. =

1

20 +cot200 ATy 1-a7

= - ~ = = = RH.S.
1+(—tan20 )(—cotzo) 1+1 2)

Exercise 6(a)

[.1. Convertthefollowingintosmplestform
(i) tan (6 -14m) (if) cot E’%T—eﬁ
(i11) cosec (5mt+0) (iv) sec(4mt-0)

2. Findthevaueof each of thefollowing
L N 0 /mg
(i) sin(-405°% (i) cos H;H
(i11) sec(2100° (iv) cot (=3159)

3. Bvduae

(i) cos?45° + cos® 135° + cos? 225° + cos? 315°
(i) sin® 2N cos2 2T g2 3T

3 6 4
(ili) cos225° —sin 225° + tan 495° - cot 495°

(iv) (cosB-sn®) if (&) g :7_7T () 0 =£T

4 3
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4. (i)Ifsng = —% and B doesnot lieinthethird quadrant, find the valuesof

(@) cosB (b) cotO
(i) 1f cosB=t (0<t<1) and Bdoesnatlieinthefirst quadrant, find the values of
(@ snB (b) tan 6.

(i) Findthevalueof sin330°. cos120° + cos210°. sin 300°
(iv) 1f cosecH +cot0= % find cos® and determinethequadrantinwhich 8 lies.

5. (i) If sina+coseca =2, findthevaueof sin” o + coseca, nOZ.
(i) If secB+tan 6 =5, find the quadrant inwhich 6 liesand find thevalueof sin 6.

1. Provethat

cos(tt—A) . cot ﬁg +A§cos( A)

(i)

3 = COsA .
tan(tt +A) tan HET[ +Aﬁsin(2 T-A)

sin(3rt —A)cos%ﬁ\ —g‘étaraszn —%

(ii) 43 = cos’A .
cos;ecE]71T + Aasec(:m +A) cotEA —%

1
(iii) sin780°sin 480° + cos 240° . cos 300° = PE

sin150° —5c0s300° + 7tan 225°

. s
W) tan135° + 3s5in 210°

o et o T8
2. () Smplify

iy S
17
COSHZH CO%% 4 CO% m[

0 0 2
(i) If tan20°= p, provethat tan610 +tan 700" _1-p

tan560° —tan470° 1+ p?

(i) If a,parecomplementary anglessuchthat bsina =a, thenfind thevalue of
(snacosP —cosa sinp).
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1
3. (i) If cosA =cosB =~ andA doesnot liein the second quadrant and B doesnot liein thethird

2

quadrant, then find thevalue of 4sinB—3tanA
tanB+sinA

(i) 1f 8tan A = -15 and25snB =-7 and neither A nor B isinthefourth quadrant, then show that

. i 04
+ - —
SINA cosB + cosA sinB 405 -

() 1fA,B,C, D areanglesof acyclic quadrilatera, then provethat
(@ snA-snC=sinD-snB and
(b) cosA +cosB +cosC +cosD =0.
4. (i) If acos®-bsin@=c,thenshowthat asin®+bcosf= +ya2 +b? —c2.
(i) If 3snA +5cosA =5, thenshowthat 5sin A —3cosA =+3.

(i) If tan?0= (1-€?), show that secO+tan®6 . cosec 6 = (2 — €?)%2
I1.
1. Provethefollowing:
0 (tanB+secB6-1) 1+sn B

(tan@-secO+1)  cosO
(i) (1+cotB—-cosecB)(1l+tanB+secB) =2

(i) 3(sinB—cosB)*+6(sinB + cosB)? + 4(sin 6 + cos® 6) = 13.

2. Provethat

(i) (sin© + cosec B)? + (cos B + sec B)2 — (tan?0 + cot?6) = 7.
1 0

—(1—and
seczaH_(l sin® q) .

(i) cos'a + 2 costa El‘

~ (1+sin@-cosB)’ _ 1-cosB
W) (1+sn6+cose)’ 1+cose

(v) If _2SN6  __ henfindthevalueof --%59*SNO)
(l+cosB+sin@ (1+sin®)

3. EliminateBfromthefollowing:
() x=acos’®; y=bsn®6
() x=acos'6; y=bsn*6
(i) x=a(secH+tanB); y=b(sec B —tan 6)

(v) x=cotB+tanB; y=secB-cosb
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6.1.7 Definition (Domain, Range and Graph of afunction)

Let A,B betwosetsand f : A -~ B beafunction. Letusrecall that A iscalled the
domain of f and B iscalled the codomain of f and that the set {f (X) | XOA} iscalledthe
range of f (range of f isalways a subset of the codomain of f). The subset

{(x, f(x)| XDA} of Ax B iscalled the graph of the function f.

6.1.8 Definition (Periodic function, Period)
Let EOR and f:E - R beafunction. Then f iscalled a ‘Periodic function’ if
there exists a positive real number ‘p’ such that
(i) x+ pUOE foral xOE and
(i) f(x+p)="f(x) foral xOE.
If such a positive real number ‘p’ exists, thenitiscalled ‘aperiod’ of f.

It can be easily observed that if f : E -~ R isaperiodic function and ‘p’ isaperiod of f,
then for any positive integer n, we get
() x+np)OE for all xOE and (i) f(x+np)=f(x) foral xOE .
Hence ‘np’ isalsoaperiod of f.
If f:E - R isaperiodicfunctionand if there exists smallest positive real number p such
that f(x+ p) =f(x) forall xOE then‘p’ iscalled ‘theperiod of f.
It can be noted that afunction f may be periodic without having ‘theperiod’. For example, if we

takeany congtant function f : E — R. (Thatis f (x) =k fordl x OR), thenany positiverea number
isaperiod of f but f doesnot have theperiod.

For any real number 6, wehave observedthat 8 and 277 + 6 havesametrigonometric ratios

(seedefinition 6.1.3) and henceall trigonometricfunctions ( f (x) = sinx, f (x) = cosx etc.) areperiodic.
Now wefind theperiods of thetrigonometric functions.

6.1.9 Theorem
The sinefunction isperiodicand 27T is the period.
Proof : Define f(x) =sinx foral x O R. Then
f (2m+ x) =sin(2m+x) =sinx =f (x) foral x 0 R.
Hence f (x)=sinx isaperiodicfunctionand 2rr isaperiod of f,

Suppose 0 < k <25 and k isaperiodof f. Then
f(x+k)="f(x) foral xOR. - (1)
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Inparticular, f(2m-k +k)="f (2m~-k) (byteking x = 271 - k)

Thus f(2m-k)=f (2 m).
That is, sin (2 - k) = sin2m = 0. . (2
Since 0<k <2, weget 0<2m -k <2m and hence weget 2T — k = rrfrom (2).
Thus k = . Now

i .ogrmr Ul . | Tl .
1=sin — = sin + km (takin =—f[in (1
> B H( QBX >H 1)
= sin 37” (since k =)

= -1, a contradiction.
Thus 277 istheleast positivereal number suchthat sin (x + 27) =sin x foral x OR . Hence
2m is theperiod of f(x)=sinx.
Wecan provethefollowing theoremsimilarly.

6.1.10 Theorem

1. Thefunction f(x) = cosx isperiodicand 2 isthe period.
2. Thefunction f(x) = tanxis periodic and 7t isthe period.
Whilefinding the period of a periodic function, thefollowing pointswill beuseful.

6.1.11 Note

1. If fisperiodic, thensois Af, for any scalar A.
2. Let f : R - R beaperiodicfunctionand p beaperiodof f. Let a, b, c bereal constants such
that a # 0. Thenthefunction g : R ~ R definedby g (x) = f (ax +b) +c foral xOR is

also periodic and ﬁ isaperiodof g. Further, if p istheperiodof f, then |al istheperiod of g.

3. Let f: A~ R, g:B - R betwoperiodic functions, p, beaperiodof f and p, beaperiod
of g. Let p beacommonintegral multipleof p, and p, and C = A n B.. Then, forany x O C,
wehave (x + p) OC. Now f +g, f —g and fg areall periodicand p is aperiod of each

of them. If g (x) # O for al xO C, then T isalsoperiodicand p is aperiod of r
g
6.1.12 Example
Find theperiod of thefunction f defined by
(i) f(x)=sin(5x+3) foral x OR
(i) f(x)=x-[¥ foral x O R, where[{ = integral partof x.
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Solution

(i) f (x)=sin(5x +3). Weknow that thefunction g (x) =sinx foral x O R, hasthe period
2. Now f (x) =g (5x +3). Henceby note 6.1.11(2) above, weget that f isperiodic and the

periodof f is 2n =2—7T.

5 5
(i) f@+x)=1+x-[1+x =1+x {1 45} =x {x] =f (x)
O f isaperiodicfunctionandlisaperiodof f, if 0< A <1.

Takexz%.Theno < (A + x) <1.Therefore, [X] =0=[A +¥ . Now

f(A+X) =A +x=[A +X] =A +x and f (x)=x-[x] =x. Thus
f(A+x) 2z f(x).
Hence 1 istheperiod of f.

6.1.13 Variation of trigonometric ratios

() Variationof sinx. (Fig6.8)

As X increases from O to W2 sin x increases from 0 to 1
AS X increases from 12 to T, sin X decreases from 1 to O
AS X increases from 11 to 3172 , sin X decreases from 0 to -1

AS X increases from 311/2 to 2m, sin X increases from -1 to O

(i) Variationof cosx. (Fig6.9)

As X increases from O to W2 cos X decreases from 1 to O
AS X increases from 12 to T, cos X decreases from 0 to -1
AS X increases from 11 to 3172 , cos X increases from =1 to O

AS X increases from 311/2 to 2m, cos X increases from O to 1

(i) Variation of tanx. (Fig 6.10)

As X increases from O to W2 tan X increases from 0 t0 o
AS X increases from 12 to T, tan X increases from —w to O
AS X increases from 11 to 3172 , tan x increases from 0 t0 o

AS X increases from 3711/2 to 2m, tan X increases from —w t0 0

Similarly, we can obtain the variations of cosecx, secx and cot x. These variations can be
easily understood from the graphs of these trigonometric functionsgivenin 6.1.15.
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6.1.14 Domain and Range of trigonometric functions

If wedefine f (x) = sin x, thenitiscalled atrigonometric function corresponding tothetrigonometric

ratiosine. Similarly, thetrigonometric functions corresponding to the other trigonometric ratios can be
defined. Thedomain and range of each of thesetrigonometric functionsaregivenin Table6.3.

Table 6.3
Trigonometricfunction Domain ( x) Range(y)
y = snx R [-1, 1]
y = 00SX R [-1, 1]
m
y = tanx R\ §2n+1) E n Dié R
y = cotx R\ {nn|nOZ} R
y =  sC X R\E(2n+1)7—2TnDLJ§ (o, -1 Ok )
y = CcOseC X R\ {nnn0Z} (o0, -1 O[% )

6.1.15 Graphsof trigonometric functions

Weplot thegraphsof thetrigonometric functionsby taking x inradianson X-axis and y on Y-axis.
Wefirstwritethevaluesof y corresponding to different values of x inatable and then by taking asuitable
scalewe plot these pointsin the coordinate plane and join these points by asmooth curveto get the graph.

1. Graphof y=snx

Table6.4
X -m|-m/2 | O m/2 | m|3m/2 |2m | 5m/2 | 3w
y=snx 0 -1 0 1 0 -1 0 1 0
Y
1_
—T ~T2 0 w2 T 312 2m 52 3M X
14 y=sinx
Fig. 6.8
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2. Graph of y=cosx

Table 6.5
X -m | -m/2| O m/2| m3m/2 | 2m | 5m/2 |3m|7m/2
y = COS X -1 0 1 O |-1| O 1 0 |-1 0
Y
/
T 2 0 w2 T 3m2 2m  5m2 3n "

y =COSX

Fig. 6.9
3. Graph of y=tan x

First observe that though tan x isnot defined for x= /2, tan x - © a x - /2 inthe

3m 5m

interval (0,77/2) andtan x — - as X — — in (77/2, 7). Similaly & X =, - aso. We
2 2 2
keep these pointsin mind whiledrawing thegraph of y= tanx.
Table 6.6
X -m| -m/2| 0 m/2 |m | 3m/2 |2m |5m/2 | 3T
y=tanx | O not 0 not | O not 0 not 0
defined defined defined defined
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= cot X

4. Graphof y

0 atthese

Before drawing thegraph notethat cot x isundefinedat —rt, 0, 71, 2 rTetc. Since Sinx

O

Bl

Hand cotx—»—ooastOinﬁ-

0
"2

Similarly for 7, 2 etc. Wekeepthese pointsin mindwhiledrawingthegraphof y = cot x.

valuesof x. But cotx - © as x - 0 inﬁ)

Table 6.7

3

not
defined

2 |5m/ 2

not
defined

3t/ 2

not
defined

ml2 T

0

0

not
defined

-17/ 2

- T

not
defined

y = cot X

b e N e e L I R
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5. Graph of y=secx

Like y= tanx, thisfunctionisaso not defined at —_Zn g _3271’ —52netc.AIso notethat secx ., o
m . o m . [T 0O . 5m
asX- — Iin, -gad secx - —© a X - — in , . Similarly for —,— etc.
2 ﬁj 2H 2 Ha'"H y 2
We keep these pointsin view whiledrawing thegraph of y = sec x.
Table 6.8
X - | -m/2 /2 m | 3m/2 | 2| 5m/2 | 3m
not not not not
=secx| -1 -1 1 -1
y defined defined defined defined
i Y i i i i
I I I I I
'\ 2 : : : |
| | I I I
I I I I I
i i i i i
I I I I I
i i i i i
I I I I I
| T | | | :
| | | i |
I I I I I
I I I I I
I I I I I
! ! ! ! !
n -2l 0 2! n 3w2l on 52! 3m 72l
: : : : :
I I I I I
R : : : |
i i i i i
I I I I I
| i i | |
I I I I I
I I I I I
I I I I I
| =21 | | | |
I I I I I
| | | | |
y= seC X
Fig. 6.12

6. Graph of y= cosec x

Likethefunction y = cot x, thisfunction isaso not defined at all integral multiplesof Tt like
-1, O, 1, 21 etc. (since sinx= 0 atthesevaluesof x). But notethat cosecx — © as x - 0

.@ED B .
in ,ZEandcosecx~ ©a X- 0in B?

(1T

thingsinmindwhiledrawingthegraphof y = cosec X.

OE. Similarly for T, 2T, 3 rretc. Wekeepthese
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Table 6.9
X - | -nm2| O m/2| T 3n2 | 2mn |5mR| 31
y=cosecx | hot -1 not 1 not -1 not 1 not
defined defined defined defined defined
l v l l l
l 2 l l l
l l l l
l l l l
1 1 | 1
: 1 : : :
1 1 | 1
l l l l
l l l l
1 1 | 1
-1t 2 0 02 it 7 sm2 31 2 X
1 1 | 1
l l l l
: - : : :
l l l l
l l l l
| 2 | | |
Yy = COSEC X
Fig. 6.13
Exercise 6(b)
I. Findtheperiodsfor thegiven 1-5functions
1. cos(3x+5)+7 2. tan bx
Ux+90

3. COSHTH 4. |sinx|

5. tan (X + 4x+ 9x + .... + n’X) (n any positive integer)

2
6. Findasinefunctionwhose periodis 3

7. Find acosinefunction whoseperiodis?.

II. Sketchthegraph of thefollowing functions

T
1. tanx between 0 and 1 2. cos2x intheinterval [0, .
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3. sn2xintheinterval (O, ). 4. sinxintheinterval [Tt +1q
5. COSZXin[O,T[]
[11. Sketchtheregionenclosed by y=sinx,y=cosxand X-axisintheinterval [0, 17.

6.2 Trigonometricratiosof compound angles

In this section, we define acompound angle and give formulaeto find the trigonometric rati os of
compound angles.

6.2.1 Definition

The algebraic sum of two or more anglesis called a “ Compound angle”.

If A,B,Carethreeanglesthen A+B, A-C, A+B+C, A-B +Cetc. arecompound angles.

6.2.2 Theorem: If A, B aretwo real numbers, then

cos(A+ B) = cosA cosB - sinA sinB

Proof: Weprovethistheoreminvariouscasesdepending onthemagnitudesof A, B, A +B.
Case(i): A>0,B>0 and A+B <21t

Consider arectangular Cartesian system OXY. Let Cbethecirclein XY planewith centreat the
origin O(0, 0) andradius1unit. SupposethecirclecutsOX aP. Then P=(1,0). Letustakethepoints
Q,Ronthiscirclesuchthat OPOQ = A and OPOR = A + B measuredin anti-clockwise (positive)
direction. Let Sbethepoint onthecirclesuchthat OPOS = B measured in clockwise (negative)
direction. Thenthe coordinatesof Q, R, Sarerespectively (cosA, sinA), (cos (A +B), sin (A +B)),

- in (— LY
(cos(-B), sin(-B)). A+B
Sub-Case(i): A+ B <m Rl .
ThentheanglesA, B, A + B areasshowninFig. 6.14. T 2
: : ~ X
In triangle POR, OP= OR =1 unitand —= oNg ! RLO)

OPOR = A + B and intriangle QOS, OQ =0OS= 1 unit
and 0QOS = A + B. Therefore, thetwotrianglesPOR and

QOS are congruent. Hence PR=QS. S
Y Fig. 6.14
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Sub-Case(ii): A+B =T Y
ThenthepointsP, O, Rarecollinear (lieon X-axis) and
thepoints Q, O, Sarecollinear asshownin Fig. 6.15. Q
A+B
v X
Clearly PR= 2 = QS (diametersof theunitcircle). R 98 PO, 1)
S
Sub - Case(iii): A + B > 1t (Fig. 6.16).
Without loss of generdity wecan assume A<Tt. Fig. 6.15
In the triangle POR, OPOR= 27 (A +B) Y

(since 2m - (A + B) < m) and

OP = OR = 1 unit and in the triangle QOS,
0QOS= 27+ (A +B) and OQ=0S = 1unit.

Hencethetwotrianglesare congruent. Therefore PR=QS.

Inall the 3 sub-casesabove, we get

PR=QS O PR? = Q5. Fig. 6.16
0 (cos(A+B} 1) +(sin(A+B} 0)
= (cosA ~ cos (-8 + (sna ~sin (-8}
O cos’(A+B) +2 2cos(A+B)+sin’(A+B)
= (cosA —cosB)’ + (snA + sinB)?

O 2 2cos(A+B) =cos’A + cos’B- 2coSACOSB + sin®A +sin?B +2sinAsinB

2 - 2 (cosA cosB -sin A sin B)

O cos(A +B)=cosA cosB- sinA sin B. . (D)
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Case(ii): A=0 (or B=0): Weconsider thecase A =0. Theproof when B =0issimilar.
ThenA+B=B, cos A=1 and sin A=0. Thus,
CosA CosB - snAsnB = cosB= cos(A +B).
Case(iii); A>0,B=20 ad A + B =2m
Inthiscase, cosB = cos(2rr —A) =cosA and
sinB =sin(2r - A) = -sin A. Thus,
cosAcosB - sinAsinB = cos’A +sin’A =1 =cos2m =cos(A +B).
Case(iv): AO[0,n,BI[m2n (or AO[m, 2m),8] [0, ).
Write =B - . Then 60 [0, 1. Hence
cos (A+B) = COS(A +1T +6) = —cos(A +6) = —{cosA cosf —sin A sin @»
(since A +6 <2m)
cos A cos (11 +6) —sin A sin (77+0)
cosA cosB —-sin A sinB.
Case(v): AO(m2n and BO(m, 27
Write a =A -m, =B -m Then 0<a, B <m andhence

cos(A+B) =cos(m+a+m+p) =cos(2m+a+ fj

cos (o +B) =cosa cosf -sina sinf
cos(rm+ a) cos(m+ B) -sin(m+ gsn(m+ j
cosA cosB -sin A sin B

Thuswe have proved thetheoremfor al A, B O[O, 271] .

Finally, we provetheresultinthegeneral case.

OA O oB O
LetA,BOR. Take m= 55 and n= FD. Then
] n

2mms<A<2m(m+1) and 2mn<B<2m(n+1).

Writt a =A -2nmand § =B-2nm . Thena, B O [0, 2m) andwehave
cos(A+B) =cos(2mm+a+2nm+ B) =cos(a+ f)

cosa cosfB —sina sin B
Therefore cos(A + B) = cosA cosB - sin A sinB.

The other formulae are derived from the above theorem asfollows.
6.2.3 Corollary: Forany A, B OR
(i) cos (A - B) = cosA cosB +sinA sinB
(i) sin (A + B) =sinA cosB + cosAsinB
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(i)  sin (A -B)=sinA cosB -cosAsinB

Proof: (i) cos(A - B) =cos (A + (- B))
= cosA cos (- B) —sinA sin (- B)
= cosA cosB + sinA sinB

since cos (- B) =cosB and sin(-B) = -sinB

(i) sin(A +B) :cos%'lg ~(A+ B)ﬁ :cosg —Aﬁ —Bé
= cosﬁg —AﬁcosB + sinﬁg —Aﬁ sinB
=sinAcosB + cosAsinB.

(i) sin(A -B)=sin(A +(-B))
=sinA cos (- B) + cosA sin (- B)
= sinA cosB — cosA sinB.

6.2.4 Theorem
s
0] If noneof A, B and (A + B) isan odd multiple of EX then
tan(A +B): tanA + tanB
1-tanA tanB

@i If noneof A, B and (A + B) isanintegral multiple of 77 then

cot B + cotA

Pr oof

(i) Sincenoneof A, B, A + B isan odd multiple of 7—2T noneof cosA, cosB, cosA +B iszero. Now

tan (A+B) = sin (A +B) _ sinA cosB + cosA sinB
cos(A +B)  cosA cosB - sinA sinB

Ondividing the numerator and the denominator in R.H.S. by cosA cosB, weget
sinA cosB N cosA sinB

CosA cosB  cosA cosB _ tanA +tanB

cosA cosB  snAsnB  1-tanA.tanB’

CosA cosB COsSA cosB

tan (A+B) =
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(i) Sincenoneof A, B, (A +B) isanintegral multipleof 1t noneof SnA,snB, sin(A +B) iszero. Now

cot (A+B) = c.os(A +B) _ cosA cosB - sinA sinB_
sin (A +B)  sinA cosB + cosA sinB

Ondividing the numerator and denominator inR.H.S. by SnA snB weget

cosA cosB ~ sinAsinB

SinA sinB sinAsinB _ cotA cotB -1

SnA cosB |, cosA sinB " COtB + COtA

sinA sinB sinA sinB

cot (A +B) =

6.2.5 Note

1. If none of A, B, A + B is an odd multiple of g then tan A, tan B are defined and

tanA tanB # 1 (since cos(A +B) # 0) and hencetheformulafor tan (A + B) givenintheabove
theoremisvalid.

2. Ifnoneof A, B, A + Bisanintegral multipleof 1, then cot A, cot B aredefined and cot B + cot A # 0
(snce sn(A +B) # 0) and hencetheformulafor cot (A + B) givenintheabovetheorem isvalid.
Onreplacing‘B’ by ‘—B’ in Theorem 6.2.4, weget thefollowing.

6.2.6 Corollary
m
() If noneof A, B, A — B isanodd multiple of X then
1+ tanA tanB

(i) If noneof A,B, A — B isanintegral multipleof 11, then

cotA cotB +1

cot (A - B) - cotB — cot A

6.2.7 Theorem: For any two real numbers A, B
(i) sin(A +B) sin (A - B) = sinA —sin’B = cos’B - cos’A.
(i) cos(A +B) cos(A - B) = cos’A —sin’B = cos’B -sin’A.
Proof (i) sin (A +B) sin(A - B)
= (sinAcosB + cosAsinB). (SnAcosB - cosAsinB)
= sin?A cos’B - cos’A sin’B
= sin’A (1 -sin?8) -(1 -sin?A)sin’8

= dn’A -sin’B
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(1 —coszA) - (1 —coszB)
cos’B - cos?A .
(i) cos(A +B) cos(A -B)

(cosA cosB - sinA sinB) (cosA cosB + sinA sinB)

cos’A cos’B - sin’A sin’B
cos’A (1 -sin?B) - (1 -cos’A) sin’B
= cos’A -sin°B
(1-sin’A) - (1-cos’B)
= cos’B -sin®A.
Now wegivetheformulaefor sin (A + B + C), cos (A + B + C),

tan (A + B + C) and cot (A + B + C) inthefollowing.
6.2.8 Theorem: If A, B, Carereal numbers, then
(i) sin(A +B+C)=sinA cosB cosC + cosA sinB cosC
+ C0sA cosB sinC — sinA sinB sinC.
(i) cos(A + B+ C)=cosA cosB cosC - cosA sinBsinC

— sinAcosB sinC —sinA sinB cosC.
m
(i) Ifnoneof A,B,C and A +B + C isan odd multiple of > and at least one

T
of A+B,B+C, C+A isnotanodd multiple of o then

tanA +tanB + tanC - tanA tanB tanC
1 - tanA tanB - tanB tanC —-tanCtanA

tan (A +B +C) =

(iv) Ifnoneof A,B,Cand A +B + C isanintegral multiple of 77 then

CotA + cotB + cotC — cotA cotB cotC
1 —-cotA cotB —cotB cotC —cotC cotA

cot (A+B+C)=
Pr oof
(i) sin (A +B+C)=sin((A +B) +C)

= sin (A + B)cosC +cos (A + B) sinC

= (sinAcosB + cosAsinB) cosC +(cosAcosB —sinAsinB) sinC.

= sinA cosB cosC + cosA sinB cosC + cosA cosB ssnC —sinA sinBsinC
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Thisformulacan bewritten as,

sin(A +B +C) =Y (sinA cosB cosC) - sinA sinBsinC

(i) cos (A + B +C)=cos((A +B) + C)
= cos (A + B) cosC -sin(A+ B) sinC
= (cosA cosB - sinA sinB) cosC - (sinAcosB + cosAsinB ) sinC

= cosA cosB cosC — sinAsinBcosC — sinAcosBsinC - cosAsinBsinC
Thiscan bewritten as

cos (A + B+ C) = cosAcosB cosC - ¥ cosAsinBsinC

m
(i)  Supposenoneof A,B,C, A+B +C isanodd multiple of P and assume,
T Th

5+ Then

tan(A +B) + tanC
1 - tan(A +B)tanC

without lossof generality, that A + B isnot an odd multiple of

tan(A+B+C)=tan((A+|3).|.C)=

tanA + tanB

1-tanAtanB
1_DtanA+ tanB Stanc

%—tanA tanB[
tanA + tanB + tanC (1 -tanA tanB)
1-tanAtanB - (tanA +tanB) tanC

tanA + tanB + tanC —-tanAtanBtanC
1-tanAtanB - tanBtanC - tanCtanA

+tanC

Thiscan bewrittenas

_2tanA - TltanA _ s
anfe B 1- >tanAtanB 1

~S
-5

Intheaboveformula,
s, = Sum of thetangentstaken one at atime.

s, = Sumof the products of thetangentstaken two at atime.
s, = Sumof the products of thetangentstaken three at atime.

(iv) Assumethat noneof A, B, C, A +B + C isanintegra multipleof ttand assume, without |oss of
generdlity, that A + B isnot amultipleof 1t then

cot (A +B) cotC -1
cot C+ cot (A +B)

cot (A +B +C) =cot((A +B) + C) =
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Lot A cotB —101
HeotB + cotA H
CotA cotB -1

cotB + cotA

cot AcotBcotC —cotC—cotB — cotA
cotCcotB + cotCcotA + cotAcotB-1

_ CotA + cotB + cotC —cotA cotB cotC
1-cotAcotB —cotB cotC — cotC cotA

cotC-1

cot C +

Thiscan bewritten as
_2cotA —TIcotA _s - s
1->cotAcotB 1-5s

cot (A + B+C)

Intheaboveformula

s, = Sum of the cotangentstaken one at atime

s, = Sumof the products of the cotangentstakentwo at atime

s, = Sumof the products of the cotangentstaken threeat atime
6.2.9 Solved Problems
1. Problem: Findthevaluesof sin 75°, cos75° tan 75° and cot 75°.
Solution

(i) sin75° = sin(450 + 30°) =sin45°cos30° + cos45°sin30°
_ 1 V3,11 N3n

V272 272 242

(i) cos75° = cos(45O + 30°) = c0s45° cos30° —sin45°sin30°
S 1B 13 48

sn75° _J3+1 (J§+1)2 o
cos75’  3-1 (V3-1)(v3+1) =23

1 1
iv) cot75° = = =2 —/3.
) tan75° 2 +4/3

2. Problem: If 0<A,B < 90°. cosA =% andsnB :% then find sin(A + B).

(i) tan75° =

Solution: 0<A<90°andcosA:1_Z 0 sinA 12

13

0<B<90%and snB :g [0 cosB g
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[0 sin(A+B)=sinAcosB +cosAsnB
12 3 54_56

135 135 65

0
3. Problem: Provethat sinZ%ZED(J - sin2D22 o . \/§+1.
2 H 442

Solution: Put A :%ZEDO and B= %2 %ﬁo Then

0
sin® %2 - sin? 22%
= sin®A -sin?’B =sin (A +B) sin (A -B) (from Theorem 6.2.7(i))
J3+1
42
4. Problem: Provethat tan70° — tan20° = 2tan50°.

tan70° —tan 20°
1+tan70° . tan20°
0 tan70> tan20% tan50° (} tan70° . tan (90> 7o°))

tan50° (1 +tan70°. cot 70°)
2 tan50° .

_ §in75° sin30° = 3+1§t

Solution: tan50° = tan (700 - 2o°) =

T
5. Problem: If A+B= 2 then provethat

(i) (1+tanA) (1 + tanB) = 2, (ii) (cotA - 1) (cotB -1) =2.
Solution

() A+B=7

O tan (A + B} tanZ: 1

@A +NB_ 10 A tasB -1 tanA tanB
1-tanA tanB
[0 tanA +tanB + tanA tanB 1 .. (1)

Now, (1 +tanA) (1+tanB) =1+ tanA + tanB + tanA tanB = 2 (from (1))

(ii) A+B:%D oot (A + B cot-4’§ 1

CLACOHB ~L 17 otAcotB 4 coHA cotB
cotB + cot A
0 cotAcotB cotA- cotB 1 .. (2

Now, (cotA —1)(cotB —1) =cotAcotB —cotA —cotB +1 =2 (from (2)).



M athematics- | A

. 1
6. Problem: If sina=——, sinf =—= and a, B are acute, show that a + 3= 174.
5

Solution

Given a isacuteand sina=——1[0 tam= E.
J10 3

. 1 1
isacuteand snB=—=0 teh= =,
B isacutean B \/g A 2
tano + tan3
Therefore tan (o +p) = 1-tanatanp
1 1
32
= =1
1-1d
32

O o+ =14

. 12 3
7.Problem: If SNA 5 cosB o and neither A nor B isinthefirst quadrant, then find the

quadrantinwhich A +B lies.
Solution: Fromhypothesis, A liesinthesecond quadrant and B inthefourth quadrant

so that 2nn+g < A < 2nm + 11

and 2mn+37n < B < (2m +2) m for someintegers m, n.

On adding, we get
2nm+2mmn+2n < A+B < 2n m+2m m+2 oM

Thatis 2km<A +B<2km+ mwhere k=m+n +1

Therefore, A +B lieseitherinfirst orin second quadrant . .. (1)
Now Cos’A +sin?A =1 [0 cos®Ar 144 10 cos&A -1 44
169 169 169
U CcosA =+ >
13
S o
[ cosA - 3 (Since A liesin 2nd quadrant)
9_ 16

Smilaly,cos’B +sin°B=1 0 sn’B ¥ —= —
25 25

O snB ﬂD S8 — —4
5 5

(SinceB liesin 4th quadrant)
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Now, cos(A +B) = cosAcosB —sinA sinB

_O-5003) 0120 4 _ 33
“HisHHs] HBsH 8 ~ e

Therefore, from (1), A +B liesinthefirst quadrant.
o o 0.
8. Problem: Find (i) tan HZ + AH intermsof tan A and

. o O .
i) cot + AR intermsof cot A.
| Dot A
Solution

o 0 tanE+tanA 1+tanA
0) tanHZ+AH: 4 - RE Ty
1-tan —tanA tan

(providedtan A # 1)

cotE CotA -1
(i) cotﬁE + Aﬁz 4 - = CotA -1 (onlywhencotA+1 # 0).
4 cotA + cot 1~ COtA +1

cos9® + sinQ°
cos9®’ —sin9°
cos9® + sin9°
cos9’ —sin9®

0
% (ondividing numerator and denominator by cos 9°)
- tan

tan (45° + 9°) (by problem 8(i))

tan54° = tan (90 - 36°) =cot36° = RH.S.

10. Problem: Show that cos42° + cos78° + c0s162° =0.

Solution:  L.H.S. = cos(60° —18°) + cos (60° +18°) +cos(180° -18°)
cos60° cos18’ + sin60° sin18° + cos60° cos18’

- sin60°sin18° - cos18®

9. Problem: Provethat = cot36°.

Solution: LHS =

2co0s60° cos18® - cos18’ = 2.1.cosl8O -cos18’ =0.

11. Problem: Express J/3sin@+cos6 asasineof an angle.

. ) 0
Solution: \/§sm6 +c0sO =2 Ij‘/ésine+1(:os
EZ 2 eﬁ
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T . T
:2(cos€ sme+smg cos 0)

=2.sn(0+ I

= 2.9n( 6).

. . L . m 3
12. Problem: Provethat sin?0 + sm2(9+§) +sn?(0 - §) =5

Tt 11
Solution: LH.S. =S8 +sin?(8+ 5) +sin?(8 - )

. . LS . T _ L1 .
= S|n26+(smecos§ +cosBOsin 5)2 +(sm6cos§ —cos§ sin 6)?

m T
sin6+2(sin’0 co§§ +coszesin2§)

PN s | 30
=sn?0+2rsin® 6= +cos® Q>
SR a4
:sin26+lsin29+§cos2 )
2 2
= 36n20+3 cos? 0= (sin? B+cos” §
2 2 2

=RH.S

|
N w

L1
13. Problem: If A, B, C aretheanglesof atriangle and if none of themisequal to E,then prove that

(i) tanA +tanB + tanC = tanA tanB tanC.
(i) cotA cotB + cotB cotC + cotC cotA =1.
Solution

() Given A+B+C=mt
0OA+B = @ tan(A+8) tan{m C)
tan A + tanB_
1-tanAtanB
0 tanA tanB= - tanC(t tanA tanBF - tanG tanA tanBtanC
U tanA + tanB + tanC = tan A tanB tanC.

- tanC

(i) Replacingtan A by 1 etc. in (i) above, weget
COtA

1 1 1 1
+ +

cotA cotB cotC_cotA.cothotC

0 cotA cotB + cotB cotC + cotC cotA =1.
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14. Problem: Let ABC beatriangle suchthat cotA + cotB + cotC =+/3. Then prove that
ABC isanequilateral triangle.

Solution: Giventhat A + B + C =180°, by problem 13(ii),
we get zcot A cot B=1. Now

> (cotA - cot B)’ =3 (cot’A + cot’B —2cotA cotB)

= 2cot? A + 2cot?B + 2cot’C —2cotAcotB — 2cot B cotC — 2cotC cot A
(onexpanding)
= 2{(cotA +cotB +cotC)2 —2cotA cotB —2cotB cotC —2cotC cotA}

— 2 (cotAcotB +cotB cotC + cot CcotA)
= 2(cotA + cotB +cotC)* -6 (cotAcotB +cotBcotC +cotC cotA)
= 23-6.1=0
[0 cotA cotB cotC

J3 o1

0 cotA cotB cotG —3= —(since cotA+cotB+cotC:\/§)

J3
T
0oA B G 3 (since eachangle liesintheinterval [0, ).
15. Problem: Suppose x =tanA, y =tanB, z=tanC.

T
Supposenoneof A,B,C, A-B, B-C, C—-A isanodd multiple of o

Then prove that EDX_ y% = I'ng_yD
+ XY[] 0l +x

X7y _ AZINB _ ) (A - B)ec ()
1+xy 1l+tanAtanB

Write P=A -B, Q=B -C, R=C -A. Then P+Q+R=0.
0P+G- R O tn(P+Q tan{ R)

tanP+ tanQ _

1—tanP.tanQ_
0 tanP tanQ=- tanR(t tanP tanQ)

= —tanR +tanP tanQ tanR
0 tanRP tan@ tanR= tanPtanQ tanR

ay tankR Il tanP
Oy tan(A BEN tan(A B)
Ux-yO Ux-y

MD =n DTX)H from (1).

Solution : Observethat

tanR




6.2.10 Note

1. Inproblem1, weobtained thetrigonometricratiosof 75°.
Since 15° = 90° - 75° and 105° =180° — 75°, wealso get that

() sin15° = cos75° = ¥3-1 _
22
(i) cos15® =sin75° :*/§+1.
22
1 1
iy tan1s® =cot75° = = =2 /3.
(i) 75’ 2+ 3

(iv) cot1s® =tan75° =2 ++/3.

. . . 3 +1
v) sinl0%5° =sin (180° -75°) =sin75° = .
) ( ) T
_ (\@ - 1)
(vi) cos105’ = — cos75° = — :
22

(Vi) tan105° = - tan75° = —(2 +J§).
(viil) cot 105° = —cot 75° = —(2 —Jé) .

6.2.11 Extremevaluesof trigonometric functions

Wehaveobservedthat,forany g 0 R, -1 < sinf < 1.
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. T
Alsoweknow that sin 7_21 =1 and Slnﬁ—Eﬁ: —1. Hence themaximum and minimum valuesof

sin® arerespectively 1and —1 as 0 rangesover R. Eachof themiscalled an extreme value of
sin 0. Similarly, themaximum and minimumvaluesof cos 0 arerespectively 1and —1over R .

6.2.12 Theorem

If a,b,c OR suchthat a?+b?>#0, then the maximum and minimum values of

asinx + bcos x + ¢ arerespectively ¢ +./a’> +b? and c - /a*> +b* over R.
Solution: Define f (x) =asinx + bcosx +c¢ foral xOR.

Put a=rcos®d and b=rsind where r = ./a® + b? . Then

f (X) =rcosd sinx + rsinf cosx +c

r(COSG sin X + sin0 cosx) +cC
rsin (6 +x) +c

. Q)
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Weknow that —1 < sin (6 +x) <1. Sothat
-r <rsn(0+x)<r
andhence ¢ -r <{c+rsin(0 +x} <c +r from (1).
Hencethe maximum and minimumvaluesof f over R arerespectively ¢ + \/m and
6.2.13 Note

From the abovetheorem, we get that therange of thefunction f is
% -yJa* +b*, c+,a +b’ H(sincef is “continuous’ on R)

6.2.14 Example

Find the maximum and minimum vauesof

i) 3sinx —4cosx i cosD +ED+2x/§si Dx+7D -3
Solutiorf) Y BX 3H 'E E
(i) From Theorem 6.2.12, we get that themaximumvalueof 3sinx -4 cosxis M =5 andthe
minimumvalueis —,/9 +16 = -5.
(i) Again, from Theorem 6.2.12, we get that the maximum value of
cosa + 242 sing -3 (Wherea = x + g )is-3 + \/178 = 0andtheminimum
vaueis-3 - /1 +8 = -6.

Exercise 6(c)

|.1. Smplifythefollowing
cot55° cot 35° -1

cot 55° + cot 35°
e, 0 aTm
il tan=+00..t — - d 0 0
(iii) BZ H arH4 ﬁ (iv) tan75°+ cot 75
(v) sin 1140° cos 390° — cos 780° sin 750°

(i) cos100°cos40° +sin100°.sin40° (i)

2. Express
, (J§ c0s25° +sin 250)
0)

5 asasineof anangle.
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(i) (cosB®-snB) asacosineof anangle.
(i) tanBintermsof tana,if sin(6+a) =cos(6+a).

cos11® +sin11°

3. () If tanB=
0 cos11® -sin11°

and B isinthethird quadrant, find 6.

(i) 1f0°<A,B<90° suchthat cosA :1—53 and sinB =g,findthevalueofsin(A -B).

(i) What isthevalue of tan 20° + tan 40° + /3 tan20° tan 40° ?
(iv) Findthevalueof tan56°—tan 11° — tan 56° tan 11°.

Sln(A+zB)Sm(’2‘_B) ; if noneof cosA, cosB, cosCiszero.
cos” Acos’B

(v) Evaluate Z

sn(C-A)

: - if noneof snA,sinB, sinCiszero.
sinC sinA

(vi) Evauate z

4. Provethat
(i) cos35°+ cos85°+ cos155°=0
(i) tan 72°=tan 18° + 2 tan 54°

(i) sin 750° cos 480° + cos 120° cos 60° = >

_ 4mn 4n
(iv) cosA +cos(? -A) +cos(? +A)=0

21 21 3
(V) cos’0 + cosz(? +0) + cosz(? -9 = 5

5. Bvduae

0 0 0 0
0) sn?82% —gn? 222 (i) co112% —gn?52t
2 2 2 2

(iii) Sinzér—ng%%‘smz%g‘% (iv) cos? 52%0—sin2 22%0.
6. Find theminimum and maximum valuesof

(i) 3cosx+4sinx (i) sin2x—cos 2x
7. Findtherangeof

() 7cosx—24sinx+5 (i) 13cosx+ 33 sinx-4
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: -3 . 7 T T _
1.0) If cosazg and smB:Z—S, where — <a <mand 0< 3 < —, then find the values of

(i)

(i)

v)

)

2 2

tan (o + ) andsin (a + ).

L 4
If 0<A<B< 2 andsin(A+B)= % andcos(A-B)= 5 then find the value of tan 2A.

3
If A+B, Aareacuteanglessuchthat sin(A +B) = % andtanA = 2 then find the value of
cosB.
1 1
If tana — tan 3 =m and cot a — cot 3 = n, then prove that cot(or—B):E e

If tan(a-B)=— and tana = ;1 wherea and B areinthefirst quadrant provethat

o +pB=12.

2. (1) Findtheexpansionof sin(A +B -C).

(i) Findtheexpansionof cos(A —B —C).

16
(i) Ina AABC, A isobtuse. IfsinAzg andsnB = %,thmshowthatsin C=—_.

(iv)
1.

1. (i)

2. ()
(i)

65
sn(a+p) _a+

f sn(@-p) a-b’

then provethat atanB=Dbtana.

31
If A-B= 7 then show that (1 -tanA) (1 +tanB) = 2.

IfA+B+C= g andif noneof A, B, Cisan odd multiple of g then provethat

(a) cotA +cotB+cotC=cotA cotBcotC

(b) tanAtanB +tanBtanC +tan Ctan A =1 and hence show that

cos(B+C) _
(© z cosB cosC

Provethat sina +cos*(a + ) + 2sina sin 3 cos(a + B) isindependent of a.
Provethat cos’(a — ) + cos’B — 2 cos(a — [3) cosa cos [ isindependent of 3.
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6.3 Trigonometricratiosof multipleand sub-multipleangles

Inthissection, wederiveformulaefor thetrigonometricratiosof multipleangles2A, 3A, ... interms

of thoseof A. Alsowediscussabout thetrigonometric ratios of thesub—multipleangles%, % ... OF A,

6.3.1 Definition

If A isanangle, thenitsintegral multiples 2A, 3A, 4A, ... arecalled“ Multiple angles of

A” andthe multiplesof A by fractionslike ...arecalled “ submultiple” anglesof A.

5’51

6.3.2 Theorem
Let A beany real number. Then

0] sin 2A = 2sinA cosA

(iN) cos 2A = cos? A — sin’A
= 2cos’A -1
=1-2sn’ A

m
(iii) If A and 2A arenot odd multiples of o then

2tan A

tan2A = ————
1-tan“A

(iv)  If 2A isnotanintegral multiple of 7, then
cot®> A -1
2cot A

cot 2A =

Proof: (i) Weknowthat sin (A + B) =sinA cosB + cosA sinB.
Hence, Sin 2A =sin (A + A) =sinA cosA +cosA sinA
= 2sinAcosA.
(i) Similarly,cos2A = cos(A + A) = cosA.cosA —sinA.sinA
=cos’A - sin’A |
= cos’A - (l—coszA) =2cos’A -1
=2(1-sn’A) -1
=1-2sin*A.
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+
(i) ten2A =tan (A + A) = 2NA T ENA
1-tanA .tanA
_ 2tan A
1-tan’A’
2 —
cot A + cotA 2cot A
6.3.3 Theorem
m
For any real number A, which isnot an odd multiple of X
L 2tanA . 1-tan’A
1) sSiIn2A = —— 1) cos2A = ———
® 1+ tan’A () 1+ tan’A
Pr oof
(i) FromTheorem6.3.2, sin2A = 2sinA cosA
_ 2sinAcosA
cos’ A +sin?A
2 sinA cosA
_ cos’ A _ 2tanA
cos’A +sin?A 1+ tan’A’
cos’ A
(i) Also, cos2A = cos’A - sin’A
cos’ A —sinA
=coszA—sinzA _ cos’ A =1—tan2A
cos? A +sin?A  cos’A +sin’A 1+tan’A
cos’ A

Onreplacing A by % inthe above Theorems 6.3.2, 6.3.3, weget
6.3.4 Corollary
If % is not an odd multiple of g then

2tan 2
2

2 A

(i) sinA = Zsiné Cos— =
2 1+ tan E)

(i) CosA = o2 2 — g2 = 2c0s 2 —1=1—25in25_
2 2 2 2
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1 - tan?

1 + tan?

N> N>

A m
(i) If = and A arenot odd multiplesof —,then tanA = 2tan—A/2
2 2 1-tan*A/2
2 -
(V) If A isnotanintegral multipleof 7z then cotA = PLA2—1
2cotA/2
Now, wederiveformulaefor sin3A, cos3A, tan 3A and cot 3A inthefollowing.
6.3.5 Theorem
For any real number A,

(i) |sin3A =3sinA — 4sin®A
(ii) |cos3A = 4cos’A — 3cosA

T _ 3
(iii) If 3A isnotanodd multipleof -, then |tan3A =SNA ~tE A
2 1-3tan’A

_ 3

(iv) If 3A isnotanintegral multiple of 7z then | cot3A = ScotA CZOt A
1- 3cot“ A
Proof: () sin3A =sin (2A +A) =sin2A cosA + cos2A sinA

= 2sinA cos’ A +(1-2sin’A) sinA

=2sinA (1-sin’A) +sinA -2sin®A

=3sinA -4sinA.

(i) cos3A = cos(2A +A) = cos2AcosA —sin2AsinA

= (ZcoszA - 1) cosA -2 sin?A cosA

= 2cos® A — cosA — 2cosA (1 - cosZA)

= 4cos’ A — 3cosA.

11
(i) Assumethat A isnot an odd multiple of 5 Then

tan3A = tan(2A + A) = tan2A + tanA

1-tan2A .tanA
2tanA +tanA
1- tan?A _ 2tanA +tanA (1— tanzA)
2tan A -

_ 2 A _ 2
_1 tanZA'tanA 1-tan“A-2tan“A
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_ 3tanA - tan’A
1-3tan’A

(iv)  cot3A =cot(2A +A)= Cot2A cotA -1

CotA + cot2A
(cot? A—1I]COtA 1
_ DD 2CotA E _ cot®A - cotA — 2cotA
- 2 A _ - 2 2 A _
COtA+C0tA 1 2cot“A +cot"A -1
2cotA
_ cot>?A - 3 cotA _ 3cotA - cot’A
3cot’A -1 1-3cot’ A
Another way of provingthisresultis
3
2 1= oA A (cot?A -
1 1-3ta*A cot?’A _ CcotA (cot’A - 3)
cot3A = = = = = 5
tan3A  3tanA - tan’A 3 1 3cot’A -1
COtA  cot’A

3cot A - cot’A
1- 3cot® A

6.3.6 Note
1. Itcanbeverifiedindependently that theformulafor tan 3A givenin Theorem 6.3.5(iii) above, remains

T

valid evenwhen 2A isan odd multiple of X

2. Also, theformula for cot 3A givenin Theorem 6.3.5 (iv) aboveremainsvalid evenif 2A isan
integral multipleof 1t provided 3A is not anintegral multipleof 1. (Thatis, 2A isanoddintegral
multipleof 1)

Onreplacing A by % intheabove Theorem 6.3.5, weget thefollowing

6.3.7 Corollary
If A isany real number, then
() snA=3sn™ -asn® 2.
3 3

iy cosA = 4cos®— - 3cos— .
(i) A=4 3 A 3 A
3 3
3tanA/3 - tan®A/3

1- 3tan® A/3

_ 3
(iv) If A isnotanintegral multipleof 1t then cotA = 3c0LA/3 ZCOt A/3.
1- 3cot” A/3

T
(i) If A isnot anodd multiple of Y then tanA =




6.3.8 Theorem
Forany AOR,

() |SnA =+ \/7%
2

, 1+ cos2A

(i) |[COSA =%  J———
2

(i) 1f A isnot an odd multiple of T then|tan A = £ 1- cos2A

2 1+ cos2A

Pr oof

(i)  Weknowthat cos2A =1- 2sin’A.

. 1- cos2A
S0 2sin?A = 1- cos2A and hence SNA =+ ‘/T'

(i) cos2A =2cos?A -1 00 2008 A * cos2A O cosA + 5

T
(i)  Assumethat A isnotanodd multipleof > Then

_ _ —
tan? A = 25|n2A :1 COs2A 0 tan A + 1- cos2A
2cos"A 1+ cos?2A 1+ cos2A -

Onreplacing A by % in Theorem 6.3.7, we get thefollowing.

6.3.9 Corollary
For any real number A,

. é _ = cosA

0) > -,/

, é _ . /1+cosA

(i) o o

(i) If A isnotanodd multipleof 7z then |tan 2 =+ [*~COSA

2 1+cosA
6.3.10 Example
Provethat (l) Sin180 = % (”) C03360 — \/§4+ 1

1+ cos2A

M athematics- | A
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Solution: (i) Write A =18° . Then 5A = 90°.

Now 2A =90° - 3A O sin2A =sin (90% 3A) = cos3A
0 2sinAcosA = 4cos® A - 3cosA
0 2sinA = 4cos’A - 3(since cos18? 0)
0 2snA=4(x sin’A} 3
O 4sin?A +2sinA 1=0.
Thisisaquadraticequationin sinA, sothat

-b\b? —4ac _-2+J4+16 -2+2.5

SinA =
2a 8 8
_-1%45
4
SinceA liesinfirst quadrant SnA > 0.
. 5-1 -
Therefore SiNA = i Thatis, sin 18° = ‘/54 1
(i) c0s36° = cos2A (where A = 18%)

= 1-2sn*A =1- 2%”57‘15 (from (i) above)

(6 - 245) _8-6+2/5 _5+1

=1-
8 8 4

6.3.11 Example
Findthevaluesof (i) sin36°  (ii) cos18°

Solution: (i) sin36° = /1 —cos?36° (Wetake positive square root because sin36° >0)

4
+
(i) Similarly, wecanprovethat cos18® = /1 - sin®18° = —“1042\6 :

6.3.12 Solved Problems

0 0 0 0

, o 1 1 1 1
1. Problem: Find the values of (|)sm22§ (i) 003225 (iii) tan22§ (@iv) cot22§ .
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0

Solution: If A = 22% , then 2A = 45°. Therefore, from Theorem 6.3.8, weget

Q) sinAz‘/% (since sinA > 0)
1
1° [i-cosa®_ 1T J2-1
0 sin22>= [~ °5% - V2 _ .
2 2 2 22
0
i) coszol = [LHOOS2A _ W2 +1
2 2 232

0

. 1 2
(i) tanzzlo—sm225 - 2-1 (\/E_l) =2 -1.
2 1° J2 +1 2-1

Cos22
2

1° 1 1

1° J2-1

tan 22—
2

=2 +1.

)

Q
S
N
N
|
|

2. Problem: Find the values of
R ) 1° 1° . 1°
i) Sin67= i) cos67= 1) tan 67= iv) cot67 =
() sin672 (i) cos672 (i) tan 67 (iv) ot 67
0 0
Solution: Thisisadirect consequence of problem 1 abovesince 67% =90° - 22% .

. 1-cos26
3. Problem: Smpllny

1-cos20 _  2sin®® _sin® _
sin20 2sin® cos® cos6O

4. Problem: If cosA = Iz—ﬂ find the value of cos 2A.
\ 22
OJ2+10 - J2+1 1

1=——-1=—.
3202 B V2 J2
5. Problem: If cosezl—g and g<e<n; find the value of sin 20.

5 . 12
Solution: Megeqr O sinB>0 and cosB=-— [0 sA= =
2

Solution: tan 6.

Solution: COS2A =2cosA -1=2

13 13
[0 sin20 =2sinBcosO

_ 12050 -120
_2&1551_35_ 160
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an X

2

6. Problem: For what values of x in the first quadrant
1-tan“ X

is positive ?

Solution: 2t;an;(>OD tan2x O

1-tan“ x
0 0<2x <X (sincex isinthefirst quadrant)
2

[ 0<x<E.
4

7 Problem: If cos8 =%3 and n<e<3_;, find the value of tan 8 /2.

Solution: tang =+

Given T[<9<37T[ O

0O tan6/2<0
0 tanB/2=-2.

. . . m
8. Problem: If Alisnot anintegral multiple of 5 prove that

(i) tanA + cot A = 2cosec2A (i) cotA —tanA = 2cot 2A

. s 2 2
Solution: (1) tanA + cotA = SnA +C_OSA = sm.A + oS A

CosA sinA SinA cosA

= — ! = — 2 :_2 = 2cosec2A.
SinA.cosA 2sinAcosA  Sin2A
_ 2
(1) cotA — tanA = N tanA = 1-taA = 2cot2A.

tanA tanA

9. Problem: If @ isnot anintegral multiple of 7—2T , prove that
tan® +2tan260 + 4tan460 +8cot86 =cotO

Solution: From problem 8(ii) above tanA = cot A — 2cot 2A .. (1)

Therefore, tanf +2tan26 + 4tan46 +8cot86
= (cotd —2cot26) +2 (cot26 —2cot40) +4(cot40 —2cot86) +8cot86 (by (1) above)

=cotH.



10. Problem: For AOR, provethat

(i) sinA sin Slg ¥ Aﬁsinﬁg— Aﬁ - % Sin3A
(i) cosA cos Slg + Aﬁcosﬁg - Aﬁ = %, cos3A and hence deduce that

i) §in20°sin40° in60° sin80° = >
(iif) T

: m 2m 3n__4mnm 1
(iv) cos — €os — C€0S — COS — = —,
9 9 9 9 16
Solution
. . g o. dm [0
(i) sinA.sin + AQsing— -
53 " AF%"H3 ~'H

- D 27T -2 I:I .
SNA. 8N — —-sin“A 2. .
B?J 3 H (from Theorem 6.2.7 (i))

inA (3 - 4sin’A
sinAﬁ—sinzAﬁzsm ( 2 SN )

NP

(3sinA -4sin’A) == sin3A

N

(i) cosA cos 5.%[ + Aﬁcosﬁg— Aﬁ

0 - . L TT[] .
COSA S"A —sSin“— from Theorem 6.2.7 (i
BSO 3H ( (ii))

0 _3_ CosA (4coszA - 3)
CosA B:oszA yioh y

1 (4cos3A - 3cosA) = 1cosBA ,
4 4

(i)  Substituting A =20° in(i) above, weget

sin20°sin (60° + 20°) sin (60° - 20°) == sin3(20°)

1
4
sin20°sin 80°sin40° = %sin60°

On multiplying both sides of the above equationby sin 60°, weget

sin20°sin40°sin60°sin80° = %sin260° :%_ 3_3

M athematics- | A
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Similarly, from (ii) above, weget

(iv) cos20°cos40°cos80° = %(:03600

On multiplying both sidesby cos60°, weget

c0s20° cos40° cos60° cos80° = %cos2 60° :%

Thatis, cos n cos E cos 3—” cos H
9 9 9 9

&r

11. Problem: If 3A isnot an odd multipleof —, prove that

NS

tan A . tan (6o° + A) . tan (60° - A) = tan3A
and hence find the value of tan 6° tan 42° tan 66° tan 78°.

Solution: From problems10(i) and 10(ii) above, we have

: . . 1.
sinA.sin (60° + A).sin (60° - A) ==sin3A
(60 + 4).n 0 - ) =% L
COSA .COS (600 + A) . COS (600 - A) =1 cos3a .. (2)
4
Ondividing (1) and(2), weget
tanA. tan (60° + A) . tan(60° - A) =tan3A . (3
Now, put A = 6° in (3), weget
tan 6°. tan 66°. tan54° = tan18° - (4
Againon substituting A =18° in (3) above, weget
tan18°. tan78°. tan 42° = tan54° .. (5)

Onmultiplying (4) and (5), weget
(tan6°. tan 66”. tan54° ) .(tan18°. tan 78°. tan 42° ) =tan18’. tan 54°

Hence, weget tan6°.tan 42°.tan66°.tan 78° = 1.

. . a -
12. Problem: For a,B OR, provethat (cosa + cosB)” + (sna +sing)’ :40052( ZB)'
Solution: (cosa + cosB)” + (sina +sinB)’
= cos’a +cos’ B +2cosa cosf +sina +sin’B +2sina sinf

=2+ 2 (cosa cosB +sina sinf) (since cos’a +sin’a =1 =cos’f +sin2/3)



M athematics- | A

=2 (1 +cos (a -B))
= 2.2cos E’%ﬁﬁ (by from 6.3.2ii))

= 4cos’ ﬂ
2
13. Problem: If a, b, c are nonzero real numbersand a, B are solutions of the equation

o o . 2bc L . ct-a
acos0 + bsin0 =c thenshowthat (i) sina +sin =——— and(ii) sina.snf = 5—-.
a~+b a~+b

Solution: acos6 + bsin6 =c
O acos& € bsin6
0 a’cos’& c* 2bcsin® b’sin®6
O a’( sin?0}) c* 2bcsin® bsin®0
O (a?'r bz)sinz(-) 2bc sin (cz— a2)= 0-
Thisisaquadraticequationin sin@,whoserootsare sina and sin (sncea, B aretwo
solutionsof thegivenequation). Therefore,
2bc
a’ +b?
¢’ -a’
a’+b?

sina +sinf83 = sumof theroots =
sna.sinB = product of theroots =

14. Problem: If © isnot an odd multiple of g and coso# —%, prove that

sin® +sin20
=tan6.
1+ cosO +cos20
Solution: SnO +sin20 _ sinf +2s1n60:)s6 (from Theorem 6.3.2)
1+ cosO +cos260 cosO +2cos“0

_sin (1 + 2cos0)
coso (1 +2cos@)
sino . 10

=— ncecosd # — — = tan®.
cosh Bg ZH

AT . 23T . .5m .
15. Problem: Provethat sm“g + sm“? +sm4? +sin*

Solution: sin L +gn* 2T gnt 2 T gns LT
8 8 8 8
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sin“g +sin4ﬁg—8rﬁ+sinﬁ2n+£ +sin1§ m —éﬁ

LTI W T m 4 T
sin*= + cos*= +cos*—= +sin*—
8 8 8 8

= 2 Hin* 2 + cos'
O 8 80
= Zaj'nzzﬂ:osz— —Zsinz—ncosz—% (smcea +b* =(a +b) —2ab)
E 8 8 8 8@
= Zﬁ—zsnz—co > T
8 8

N

2 —45in? L cog? I =
8 8

o
- SIN— COS—
8 8H
3
-

0. ., 1.
Z—gmza —2—5—

16. Problem: If noneof 2A and 3A isan odd multiple of 772, then prove that
tan3A tan2A tanA = tan3A —tan2A —-tanA.

tan2A + tanA
1-tanA .tan2A

0 tan3A(t tanAtan2AF tan2A +tanA

0 tan3A tanAtan2Atan3A =tan2A + tanA
O tan3A tan2A tanA =tanA tan2Atan3A.

Solution: tan3A = tan(2A + A) =

Exercise 6(d)
sin20 ... 3cosB +cos30
I. 1. Simplify (i) 1+ 00520 (i) 3§n6—<n38
2. BEvduaethefollowing
(i) 6sin20°-8sin®20° (i) cos?72° —sin?54° (iii) Sin?42°0—sin?12°
3. (i) Express Sin48 intermsof cos®0 and cos 6.

sin@
(i1) Expresscos’A + SinA intermsof Sin 2A.

1-cosO+sinB
1+cosO+sin@

(iii) Express intermsof tan 6/2.
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T
4. () If sinazg, Where§<d<ﬂ,evaluatec033a and tan 2a.
- 7 31 )
(i) If CosA =25 and ?<A < 2T, then find thevalueof cot A/2.

n
5. Findtheextremevaluesof (i) cos2x+ cos*x. (i) 3sin?x+ 5 cos? x

6. Ifas cose+3\/§sjn§a+41['é +6 <b, thenfindthelargest valueof aand smallest valueof b.

7. Findtheperiodsfor thefollowing functions

i) cos*x i) 2sin + 3o i) sin?x+ 2cos? x
0 e 0

. om0 5sin x +3cosx

V) 29in + XCOS X \Y;

(V) Hz_l )% V) 4sin2x+5cosx

1. (i) If O<A <E, and cosA :g, find the valuesof sin 2A and cos 2A.

cot> A —3cot A
3cot’ A -1

(i) For what valuesof A inthefirst quadrant, theexpression ispostive?

(i) Provethar SSPAYSINSA _ 4 odin2a
COosA —sinA

cos20
1-sin26

_ ot O .
2. (i) Provethat Cot le - GH = and hencefind thevalueof cot 15°.
. -4
(i) If Bliesinthird quadrantand Sin© :?, findthevaluesof cosec(6/2) andtan (6/2.)

(iii) 1f 450°< 0 <540°and sinG:%, then calculatesin (6/2) and cos (6 /2).

1 4
(v) Provethat " 5000 * J3sin250° ) Nek
3. Provethat
(i) sin2A _ (1-cosA) — tan é_
(1-cos2A) COsA 2

sin2x sec2x _ tan OxO

(secx+1) ~ (sec2x+1) 2
(cos® 6 —cos36) . (sin®B8+sin39 3
cos@ sin® '

(if)

(iii)
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Cos3A

4. (i) Showthat cosA =———— . Hence find thevalue of cos 15°.

(2cos2A -1)
(i) Showthat sinA =— 3732 Hencefindthevalueof sin15°.
1+2cos2A

. 0
(iii) Provethat tana = _sSn2a and hence deducethevaluesof tan15° andtan 221 :
1+ cos2a 2

Provethat

1 3

sin10° cos10®

(i)

(i) /3cosec 20° -sec20° = 4
(i) tan 9° —tan 27° — cot 27° + cot ° = 4.

sina _ cosa
(iv) If T_T’ then provethat asin2a + b cos2a =b.

5 B 20 oco_ 2
== tan— = —, tan =—.
and tan then show that BEH 5

() InaAABC; if tan
6 2 37

N | >

(i) If cosB = 1_3 and 270°< 0 < 360° evauate sin(6/2) and cos(6/2).

g = 4 . PO 0

(iii) If 180°< B<270°and SIN6 =— caculatesin and cos .
5 HeH a7ln

31 51t
i cos? D+ cos? 21 + cos? 2] +cos2 LMo
(i) Provethat 3 3 s 3

i 5 [J

(i) Show that cos® %ﬁr cos‘ﬁ%’% + COSH = +C0ﬂ 5 =

N w

(i) If tanx+taan +tarEx+—E =3, show that tan 3x = 1.

(i) Provethat Sn—.sin——.sin~—.sin—=—
57 57 5 5 16

021

(iii) Show that cos’ Bl—H+cos HEH +cosﬁ %%[ +co% %ﬂ =2
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2. Provethat
. 1-sec8a _ tan8a
0 I“secaa ~ tanzo
g 310 70m 9mn 1
ii + C0S 1+cos 1+cos 1+cos =—.
(..)Q 10895 TS 16H 0 16

3. Provethat

: 21 4 8T
M cos7.cos7.cos

) ) 2T T 4m_5m 1
(i) COS—.COS—.COS— .COS—.CO0S— = —
11 11 11 11 11 32

4. (i) If cosa :g and cos3 :1—53 and a, 3 are acute angles, then provethat

> —-pBO_ 1 >0 +B0_16
a) sin b) cos =—
@ sn o e (b) cos" = =G
(i) 1If Alisnotanintegral multipleof 1T, provethat
Sin16A
CoSA. cos2A . cos4A. cos8A = - and hence deduce that
16sinA

21 4M 8m__16m 1
COS—.C0S—.C0S—.COS—— = —
15 15 15 15 16

6.4 Sum and product transfor mations

Making useof theformulaeof sin (A + B), sin(A -B), cos (A + B), cos(A - B) €fc.,inthis

section we giveformulae to transform the sum (difference) of two trigonometricratios into productsand
vice-versa

6.4.1 Theorem (Transformation of product into sum)
For A, BOR wehave

1. 2sinAcosB = sin(A +B)+sin(A -B)
2. 2cosAsnB = sin(A +B)-sin(A -B)
3. 2cosAcosB = cos(A +B)+cos(A - B)
4. 2sinAsnB = cos(A -B)-cos(A +B)

Proof © Weknow that, sin (A + sinA cosB +cosAsinB and

B) =+
sin (A - B) =sinAcosB —cosA sinB
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6.4.2

6.4.3

Onadding theseidentities, weget

sin (A +B) +sin(A - B) =2sinA cosB,
On subtracting, we get

sin (A +B) - sin(A - B) =2cosA sinB.
Similarly, wehave

cos (A + B) =cosA cosB - sinA sinB

cos (A - B) =cosA cosB +sinA sinB.
On adding, thesetwo identities, we get

cos (A +B) +cos (A — B) =2cosA cosB.
On subtracting, weget

cos (A +B) —cos (A - B) = -2sinA sinB (or)

cos (A - B) —cos (A + B) = 2sinA sinB.

Note
Thefour identitiesin the above theorem can beremembered easily asfollows
2sinA cosB = sin (sum) + sin (difference)
2cosA sinB = sin (sum) - sin (difference)
2cosA cosB = cos (sum) + cos (difference)
2sinA sinB = cos (difference) - cos (sum)

Inthefollowing theoremwegivetransfor mationsfrom sum into products.

Theorem
For any two real numbersC and D, we have

1. snC+snD = Zsiné.c%ﬁ cosDC—;.é

2 snC-sinD = 2cosé'C+TD§ gnﬁc_;a

3. cosC + cosD = Zcosé.CJrTDﬁ cosﬁc—;.é

4. cosC - cosD = —2gn%§gnﬁc_;.§
C+D C-D

Proof : WriteA:T and B = — Then A+B=C andA -B=D.

Now, weget, from Theorem 6.4.1, all theabove 4 transformations.

()

(2

(3

(%)
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6.4.4 Solved Problems

1. Problem: Provethat sin78° + cos132° =

J5-1
et

Solution: sin78° + cos132° =sin78° + cos (9o° +42°)
78° +42° . 78° —42°
Sn
2
= 2c0s60° sin18° :2%@64' 1 ‘/34_1.

=sin78° —sin42° =2cos

2. Problem: Provethat sin21° cos9° - cos84° cos6’ = % .
Solution: sin21° cos9® - cos84° cose’

= %(Zsin21° cos9’ - 2cos (90° ‘60) 00560)

:%(sin (21° +&°) +sin (21° -9°) -2sin 6000560)

=1 (sin30° + sin12° - sin12°) =L gnaoe =1
2 2 4
3. Problem: Find thevalue of sin34° + cos64° — cos4®.
Solution: Sin34° + (cos64O - cos4°)
. . 64° +4° . 64° - 4°
- sin34° — 26n ™ ,——sin 64 5 (by Theorem 6.4.3 (4))

—sin34° -2.sin34°. sin30°

= 0 (since sin30° = %).
4. Problem: Provethat cos® 76° + cos” 16° — cos 76° cos 16° =£§1.
Solution: cos® 76° + cos® 16° — cos 76° cos 16°

= cos?76° + (1 - sin216°) _1 (2cos76° 003160)

2
=1+(cos? 76° - sin?16°) _1 (cos (76° +16°) +cos(76° —160))
2
— 1+ cos (76° + 160) cos(76° - 16°) _1 (cosgz0 + coseo°)
2

=1+ c0s92° cos60° - % c0s92° —%cos600
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1 o 1 o 1 i 1
=1+ =c0s92” — =c0s92"° —-= 0 - =
5 5 1 (since cos60 2)

Alw

5.Problem: If a,b # Oand sinx + siny=a and cosx + cosy =b, find the values of

y intermsof a and b.

() tan “= (i) sin %

Solution

() snx+sny=a [ Zsinﬁﬁ—yﬁcosﬁx;%: a - (1)
cosx + cosy =b 0 Zcos HCOS X—H: b .. (2
Ondividing (1) by (2), weget tan% :% .

(i) First method
a2 +b?=(sinx+siny)’ +(cosx +cosy)’

=sin?x +sin® y + 2sinxsiny +cos® X +cos’ y +2C0SXCoSY
=2 + 2 (cosx cosy +sinxsiny)

=2+ 2cos(x - )
2 2 _
0 cos (% Yy¥ ng
2 OX=yO_ ., N, &+ _4-a%-p°
Now 2sin B—H_l cos(x —y) =1 5 = 5

OX—y

Second method
From (1) and (2), weget

a?+b® = 4sin? B—HCOSZB—H +4COSH —% cos? —_%

X =y y + Y]
= 4 cos? + cos®

T2 g™ 2 ~ ]
= 4 co2 X~ YE

0 o2 BV a2+b2_
2 E: 4
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_at+b® _4-a® b

.2DX_y|:|_ _ DX_)D:
Now, sin BTH—l COSZE—ZE 1 2 2
x-yQd_  y4-a -b
H20 % 2

2

Hence sin

N~

6. Problem: Provethat cos12® + cos84° + cos132° + cos156° = -

Solution: ¢cos12° + cos84° + c0s132° + cos156°
= (coslzo +005132°) + (cos84° +c05156°)
132° +12° 1320 —12° 84° +156° 156° —84°
.COS + cos

2cos
2

= 2C0s

= 2c0s72° .cos60° +2c0s120° cos36°

o1l o.010 o
=2.sn18°.= + 2 7 —Fcos36
H 28

2

W5-10 OVE+D 1
4 E E 4 E 2
7. Problem: Showthat, forany 6 0 R,

4Sin@ COSﬁ c0s30 =sin® —sin20 +sin40 +sin70 .

=sin18° - cos36° =

Solution: 4Sin5—e COSﬁ cos30 =2 %sin56 cosﬁ Dc0s36
2 2 2 "2 H

= 2(sin40 +sin0)cos30

25in46 cos360 +2cos30 sin6

sin (46 +3 6) +sin (46 —36) +sin (39 +0) —sin (39 —9)
Sin 70 +sin® +sin460 —sin26.

8. Problem: If noneof A,B, A+ B isanintegral multipleof 7z then
1- cosA +cosB - cos (A +B) A B

= tan— cot —.
1+ cosA - cosB - cos (A +B) 2 2

Solution: 1- cosA +cosB —cos (A +B) =1-cos(A +B) —(cosA -cos B)
> A+B . A+B . A-B

+2.8n sin >
A+BQO. A+B . A-B[

sin +sin H
2 0 2 2

prove that

=2sn

= 2sin
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A+B[.. A BO

=2s9n

2sin — cos
E 5 E% .. (1)

Now, 1+cosA - cosB - cos (A +B)
= (1—cos(A + B)) + (cosA - cosB)

+ + -
— g2 AYB —ZsinAzBsinA B

2
:25in—A+B%sinA+B —sinA_B%
2 0 2 2 0

DA + BOO

= 2sin BTHEZ COS— sm% ..(2)

From (1) and (2), weget that

4sinDA+BD sinA cosE
1-cosA +cosB -cos(A +B) _ H2 H™ 272
1+ cosA - cosB - cos (A +B) 45 DA+BDcosésmE
"H 2 29"
:tanécot
2

2°
9. Problem: For any aOR, prove that coszﬁi 4@ cos’ Ha +—%| —cosﬁa —I% =

N

o no 4o .0 M 4 @m0

2 2 - —
Solution: cos HX 4H + ECOS H(I +ﬂ COSHG IE E

_1+cos% —Zﬁ v sin a @a—m a +DTD
- 2 ng 12 H B EH FE IE EH
—1+sn2a +sin2a. smErnﬁ-l +1sm20 —%sta —%.

m
10. Problem: Suppose (a ~ 8) isnot an odd multipleof —, m isanon zeroreal number such that

sn(a+B) _1-m T [ o, %
-1 and SESLUS 17 that tan (- - a= Z
m# —1an cos(@=p) “1em en prove 0, ~9g=m-tag,

Solution: Giventhat 8N (a +ﬁ) _1-m.
cos(a -B) 1+m
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By using componendo and dividendo, we get

sin(o +B) + cos(a - B)_ l-m+l+m 2 -1 .
sin(a+p) —cos@—B) (I-m)—(1+m) -2m m (giventhat m # 0)
)

:>m{sin(a+[3 + cos (a — )}Z—{Sin(a*‘B)_COS(O‘_B)}
— m{sin (o +B)+ sin(%— (a0 - B)]}

- {sin (o +B) - sin (% (o - ﬁ))}

oc+[3+£—a+[3 oc+B—£+oc—B
= m.2sin 2 Ccos 2
2 2
(x+[3+£—(x+ﬁ a+B—£+oc—B
=-2cos 2 sin 2
2 2

= m.sin(E +Bj.cos (a —Ej = — COS (£+ Bj sin (a —Ej
4 4 4 4

= msin(£+Bj.cos(£—ocj= cos(£+[3jsin(£—aj
4 4 4 4

(since cos(—0) = cos O and sin(—0) = — sin 0)

Exercise 6(e)

. 1. Provethat sin50° — sin70° + sin10° =0.

. 0 0
2. Prove that 3 70" —cos40” 1

c0s50° —sin 20° B \/3




Trigonometric Ratiosupto Transfor mations

Provethat cos55° + cos65° + cos175° =0.
Provethat 4 (005660 + sin84°) =3 +15.
J3+1
=

Provethat cos20° cos40? — sin5%sin25° =

3+4/5
.

Provethat cos48°.cos12° =

e 0 O4rm
Provethat coso + cos +0F +cogg— +67 =0.
Hz "'H Y3 ﬁ

2 g, . o0 il . 4] m 1

Provethat SIn ETJ _ZH+Sm Ha +Iﬂ _SmHa _IE :5_
If sinx+ sinyz%1 and cosx+cosy:%,thenshowthat

(i) tan Ty ‘% (if) cot (x + y) =—

: O, _mQ 0, _5ro. . ,
If neither Ef\ 125 nor Bﬁ 12Elsanlntegral multipleof 11, provethat

4cos2A

COtB]._ AH+tanH AH —1 2SN 2A

Provethat 4co0s12° cos48° cos72° = cos36°.
Provethat sin10° + sin20° + sin40° +sin50° =sin70° +sin80°.

—Y +5 cot

2 X X +
If cosx +cosy :g and COSX — CcOSy = - findthevalueof 14tan y .

If none of the denominatorsiszero, provethat

OA — ) .
cosA +cosBO  OsinA +sinBd" EQ cot” if niseven
¥ H 2 H

C5nA —snBD *DoosA —cosed -
A —snB A -
[SNA = SNBL - JeosA =S H 0 . if nis odd

If sinA =sinB and cosA =cosB, thenprovethat A =2ns +B for someinteger n.
If cosna #0 and cos% #0, then show that

sin(n+1)a -sin (n -1) a —n?
cos(n+1) a +2cosna +cos(n -1)a T2

a
If sec(0 +a) +sec(d —a) =2secOd and cosa # 1, thenshow that COSO = +./2 cos 5
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m
6. If noneof x,y, z isan odd multiple of P and if

sin(y +z-x), sin(z+x-y),sin(x +y -z) areinA.P, then provethat

tanx, tany, tanz areasoinA.P.
7. 1fx,y,z arenon zero real numbersand if

Xcosh =y cosﬁa + %TE = zwsﬁe +%TE for some 00R , then
showthat xy +yz +zx = 0.
8. If neither A nor A +B isanodd multipleof — andlf msinB=nsn(2A + B), thenprovethat
(m+n)tanA =(m-n) tan(A + B).
9. If tan (A +B) = A tan(A - B), thenshowthat (A +1) sin2B = (A -1) sin2A.
6.4.5 Identities
When A, B, C are 3 real numbers satisfying the conditions like A + B+ C =0 or

T
A+B+C= > or A+B+C= m or A+B+C= 2 etc.,, weprovesomeidentitiesrelating to the

trigonometricratiosof A, B, C.
1. If A,B, C areanglesinatriangle, that is, if A +B + C =11, thenwehavethe following identities.
A+B+C=m 0O A+B=m-C
Sothat, sin (A +B)=sin(180° - C) = sinC. Sinilarly,
sin(B+C) =sinA and sin(C+A)=sinB.
Also  cos(A +B)=cos(rm~C) = - cosC. Similarly,

cos(B + C) =—cos A and cos(C+A)= - cosB.

T
2. If A+B+C = o then we have

sin (A +B) =sin Slg - Cﬁ = cosC, similarly, weget
sin(B + C) = cosA; sin(C + A) =cosB; cos (A + B) =sinC;

cos(B + C) =sinA; cos(C + A) =sinB.
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3. If A+B+C= 11 then

N | >
N[O

+%+ :g and hence we get that

DA+BD O

B—H_ rHZ E—cosE Similarly,

B+ C[ A C+A B A+B 9
2

sin Bia COSE sin :COSE; COos =8an

DB+CD

Biﬁ sm% COSH—H —sm—

4. If A+B+C=0, then
sin (A +B) =sin (- C) = —=sinC. Similarly, weget
sn(B+C)=-sdnA and sin(C+A)=-sinB
Agan, cos (A +B) = cos (- C) = cosC. Similarly,
cos (B + C)=cosA and cos(C + A) = cosB

Wemakeuseof all theseidentitiesinthefollowing.
6.4.6 Solved Problems
1. Problem: If A, B, C arethe angles of atriangle, prove that
(i) sin2A +sin2B +sin2C = 4sinA sinBsinC.

(i) sSin2A +sin2B —sin2C = 4cosA cosBsinC.
Solution

(i) sin2A +sin2B +sin2C

2sin(A + B) cos (A —B) + 2sinC cosC

2sinC cos (A - B) + 2sinC cosC (since sin(A +B) =sinC)

ZsinC{cos (A -B)+ cosC}

2sinC{cos (A - B) -cos(A + B} (sincecos(A +B)= —cosC)

2sinC (2sinA sinB)

4sinA sinB sinC.
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(i) sin2A+sin2B —sin2C
2sin (A+B) cos(A - B) - 2sinCcosC
2sinCcos (A -B) = 2sinC cosC

ZsinC{cos (A-B)- cosC}

ZsinC{cos (A -B)+cos(A+ B}

2 sinC{2cosA cosB

4cosAcosBsinC.

2. Problem: If A B, Careanglesof atriangle, prove that
(i) cos2A + cos2B+cos2C = - 4cosA cosBcosC 1.

(i) cos2A +cos2B - cos2C =1 - 4sinAsinBcosC.
Solution

(i) cos2A+ cos2B+ cos2C

2cos(A +B) cos(A -B) + 2cos’C -1

—2cosC cos(A -B) + 2cos’C -1 (since cos(A +B) = —cosC)
—2cosC{cos (A -B) - cosC} -1

- ZcosC{cos (A-B)+cos(A+ B} -1
— 2c0sC (2cosAcosB) -1 = - 4cosA cosB cosC -1.
() cos2A +cos2B —cos2C

= 2cos (A +B) cos (A - B) - (20052C —1)

= 1- 2cosCcos(A -B) —2c0s°C

= 1~ 2cosC (cos (A - B) +cosC)

= 1~ 2 cosC{cos (A -B) - cos (A +B}

= 1~ 2cosC (2sinAsinB)
1-4snAsnB cosC.

3. Problem: If A B,Careanglesinatriangle, then prove that

(i) sin A +sinB+ snC = 4003% cos% cos%.

(i) cosA +cosB + cosC =1+ 4sin% sin % sing_
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Solution
(i) snA+sinB +sinC

i DA+BD ODA +23|nEcosE
2 BH 2 1
-B . C
2 COS — CO0S %ﬁ*‘ ZSHE COS— (gnce sin BiBﬁ
Zcos— [pos B—H+ sinEE

OA + BJU A +B

Zcos— [pos Biﬂ"L cosB—HD (since cosBT

C % A BO
2C0S— 2C0S— COS—
2 2 7 2H

A B C
4cosS— COS — COS — |
2 2 2

() cosA + cosB + cosC

4. Problem:

A+BO OA-B] . .. »C
2c0s BTHCOSBTH +1-2sn >

. C DA_BD 2C

1+ 2sin—cos - 2sin
> "H 2 H 2
ol

1+ Zsm— [pos B—H—sn—g

OA-BO I]A +B]D

1+25|n—[posB—H— H—HD
1+ 25in9 %siné sinED
2 2 7 2H
C

1+ 4siné sinE sin—,
2 2 2

1S
If A+B+C=§,thenshowthat
() SPPA+sn’B+sn’C=1-2sinA sinB sinC.

(i) sin2A +sin2B +sin2C = 4 cosA cosB cosC.
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Solution
() sn?A + sin?B +sin’C

= E{ZsinzA +2sin? B+2$in2(}
2

= %{1 -c0s2A +1 —cos2B +1 —-cos2G

= %{3 — (cos2A +cos2B + cosZC}

1 . . .
= 5{3—(1+4smAsmB smC} (from problem 3(ii) since 2A +2B + 2C =)

= %(2—4sinA sinB sinC)

= 1-2sinA sinB sinC.
(i) since 2A + 2B +2C =11, from problem 3(i), weget

sin 2A +sin2B +sin2C =4cosA cosB cosC.

3mn
5. Problem: If A+B+C= PE prove that

COS2A +cos2B+cos2C =1 -4sinA sinB sinC.

Solution: cos2A +cos2B + cos2C

2cos(A + B) cos(A - B) +1 -2sin’C

2(-sinC) cos (A -B) +1 -2sin’C

3
(since cos(A +B) 2005(7 -C) = -sn()

1-2sinC{cos (A -B) +sing

1-2sinC{cos (A -B) —cos (A +B} (asabove)

1-2snC(2snAsinB) = 1-4snAsnBsinC.
6. Praoblem: If A, B, C areanglesof atriangle, then prove that

oA 5B ,C A _B_C

sSin“— +sin“— —sin®— =1 -2¢0s — cos — Sin—,

2 2 2 2 2
Solution: sin? 2 +gn2B —gn2&
2 2 2
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on
ﬂ

-1 &sinzé +26in? 2 —2gin?
20 2 2 20

(1-cosA) + (1 -cosB) - (1 —cosC}

—_

1 - (cosA +cosB) + cosC}

cos +1-2sin?
2 2

|
N
Q
(@)
(7]

A+B _A-B .5, C
2

[

. C A-B
—ZSlnECOS

:sing_'Z
2

NIk NIk NR NP

OO0 OO

., CO0O . A+B
- 2sin? = since cos
20 B

. CO A . C[
1 SH'IZBCOS +S|I’IZB

A-B A + B[
+ Cos 5 H (as above)

=1- sin% ﬁ:os

. C A B0 A B . C
= 1-sin— 2c0s— cos— = 1 -2 cos— coS— Sin—
2% 2 - 2H o Yy

7. Prablem: If A, B, C aretheanglesinatriangle, then prove that
. A . B . C_ . nm—-A . nm-B . nm-C
Sn— +sin— +sin— =1+4sin sin sin .
2 2 2 4 4 4

Solution: siné + sinE + sinE
2 2 2

|
I\)

CA + BO +CO%A+. L. B CO

ﬁHCOSH—H —E Bsmce COS =gn ZH
OA + B[O 4 A +B

B—HCOSH—H +1- ZSIHH—E
1+29nB—H[pos§A—_H -Sll‘H A—+EE

or-cgod A -B Omr A +B10

:1+ZsinH 2 HEpos 2 _COSHE_THE
]

:1+23inn_CD25in n_BsmB 2 EH
:1+4sin§n;A§smﬁn4 srﬁ—gn;g
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8. Problem: If A+ B +C =0, thenprovethat
cos’ A + cos’B + cos’C =1 +2 cos A cosB cosC.
Solution: cos® A + cos’ B + cos? C

_ (1+ c<2332A) .\ (1+ c;sZB) .\ (1+ c;sZC)

= %{3+0052A +cos 2B + cos 2G
= %{3+2cos(A +B) cos (A -B) +2cos’C —#

= %{2 +2cosC . cos(A - B) +20052C}
(since cos(A + B) = cos (-C) =cosC)
1+ cosC (cos(A - B) +cosC)
=1+cosC {cos(A - B) +cos(A + B}
= 1+ cosC (2 cosA cosB)

= 1+ 2 cosA cosB cos C.

9. Problem: If A +B + C=2S, then provethat
A B C
cos (S—-A) +cos (S - B) + cos(S - C) + cosS = 40035 cosE cosE_
Solution: cos (S—A) +cos (S - B) + cos(S - C) + cosS

12S-A - BD 0B - A

Zcosﬁi SH—H + 200528

co%%
OA +B]

Zcos—cosH—H+2cosH—E cosE (snce2S-C =A+B)

—BD OA + B

2acsC
cos [pOS Biﬁ COSHgaD

C A BO
= 2C0s— &cos— COS—{]
20 2 2]

A B C
4c0S — COS— COS— ,
2 2 2
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Exercise 6(f )

. 1. If A,B,Careanglesinatriangle, then provethat

() sin2A —sin2B +sin2C = 4cosA sinB cosC.

() cos2A —cos2B +cos2C= 1-4sinA cosB sinC.
2. If A,B,Careanglesinatriangle, then provethat

() sinA +sinB—sinC:4sin%singcos%-B .

(i) cosA +cosB —cosC=-1+ 40055 cosE sinz-

3. If A,B,C areanglesinatriangle, then provethat
() sin®A +sin’B - sin’C = 2sinA sinB cosC.
(i) cos®A +cos’B — cos’C =1 - 2sinA sinB cosC.

4. If A+B+C=rm, thenprovethat

() o2 4 o2 B 1 02 =2 EH sn? sin B gn CH.
2 2 2 2 2 2
(i) o2+ o2 B 02 € = 2052 cos B sinE.
2 2 2 2 2 2
5. Intriangle ABC, provethat
() cosé + cosE + cosE = 4cos = A cos = B cos™ —C
2 2 2 4 4
. A B C T+ A n+B n—-C
(i) cos— +cos— —cos— = 4cos Ccos Ccos
2 2 2 4 4 4
. . A . B . C_ T—A n-B . n-C
() sin — +sin — —sin — = -1+ 4 cos cos sin
2 2 2 4 4

T
6. IfA+B+C= E,thenprovethat C0S2A + cos2B + cos2C =1+ 4sinA sinBsinC.

3n
2
(i) cos?A + cos?B — cos’C = — 2cosAcosB sinC.
(i) sin2A +sin2B —sin2C=-4sinA sinB cosC.
8. If A+B+C=0,thenprovethat
(i) sin2A +sin2B +sin2C =-4sinA sinBsinC.

(i) sSiNA +sinB -sinC = —4cos% cosgsin% :

7. If A+B+C=—,thenprovethat
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9. If A+B+C+ D =2m then provethat

o . . . +B . + +
() sinA —sinB +sinC —sinD = —4c:osA2 BsmAzccosAzD-

(i) cos2A +cos2B +c0s2C +cos2D = 4 cos(A + B) cos (A + C) cos(A + D).

10. If A+B+C =2S, thenprovethat

(i) sn(S-A)+sin(S-B) +snC= 4coss'_2A coss';B sin%_
(i) cos(S—A)+cos(S-B) +cosC= -1+ 4cosS_2A cosS;B cos%.

Key Concepts

% Foranyangle®, cos?0 + sin?0 =1.

If cos® # 0, then 1+ tan’0 =sec’O or tan’0 =sec’0 —1.

/
0‘0

If sind # 0, then 1+ cot®0 =cosec?d or cot®0 = cosec’d — 1.
< Thetrigonometric ratiosthat are positivein different quadrantsare given by

Quadrant : I [ [l v

Trigonometric : All sne tangent cosne
ratiothat is+ve

/
0.0

*e

Remember : All Siver Tea Cups
% 9n (— 9) = —sin0; cos(—e) =cos0; tan(—@) = —tan®.
< All trigonometricfunctionsareperiodic.
Theperiodof f (x) =sinx is 27.

Theperiodof f (x) = cosx is 27.
Theperiodof f (x) =tanx is .

< If y =1 (x) isaperiodicfunctionwithperiodk, then g (x) = f (ax + b) isaperiodicfunction

. .k
with period @
« If y=1 (x), y =g (x) areperiodicfunctionswith |, masthe periodsrespectively, then for

a, b 0 R, thefunction h, defined by
h(x)=af (x) +bg(x)
isaperiodic functionandthel.c.m of {I, m} (if exists) isaperiod of h.
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(i) Therangeof sinx or cosx is [-1,1].
(i) Therangeof tanx or cotx is R.

(i) Therangeof secx or cosecx is (= oo, —1] O[1w )
For any two anglesA, B

n (A +B) =sinA cosB +cosA sinB

n (A - B) =sinA cosB —cosA sinB
cos(A + B) = cosA cosB —sinA sinB

cos (A - B) =cosA cosB +sinA sinB
If noneof A,B, A+B, A-B isanodd multlpleof , then

(A +B) tanA + tanB
1-tanA tanB
1+tanA tanB
If noneof A, B, A +B, A —B isanintegral multipleof 1, then
(A N B) cotA cotB — 1
cotB + cot A
cot (A B) CotA cotB+1
cotB — cot A
If A,B, COR

n(A+B+C) = Z(sinA cosB cosC) —sinA sinB sinC.
cos (A + B +C) =cosA cosB cosC —Z(cosA sinB sinC).

If noneof A, B, A +B +C isanodd multiple of % and at | east one of

A +B, B+C, C+A isnotanodd multiple of g,then

Y (tanA) - MtanA
1-% (tanA tenB)

tan (A + B +C) =

If noneof A, B, C, A+B+C isanintegral multipleof 1t and at least one of
B+C, C+A, A+B isnotanintegral multipleof 11, then
> (cotA) - M (cotA)

1- Z(cotAcotB)

cot (A +B +C) =




/7
0‘0

/7
0.0

Forany A OR,

2tan A

() sin2A = 2sinA cosA =
1+ tan“A

(i) cos2A = cos?A —sin®A =2cos’A -1

_ 2
=1-28§n2A = W .
1+tan“A
(i) If A and 2A arenot odd multiplesof T then tan2A = ZVL?
2 1 - tan2A
2 pa—
(iv) If 2A isnotanintegral muitiple of T then cor2A = LA L.
2cotA
Forany AOR,
() sin3A =3sinA -4sin’A-
(i) cos3A = 4cos’A - 3cosA -
_ 3
(ii) 1f 3A isnotanoddmultipleof —, then tan3A = > nA ~ fATA
2 1- 3tan?A
_ 3
(v) If 3Aisnotanintegral multipleof T, then cot3A = SCtA ~ COUA
1- 3cot°A

Forany AO R,

(i) SnA =+ \/7%.
2
\/m
+ [—.
2
(iii If Aisnotanoddmultipleof X, then tanA = + |1 ~C0S2A .
2 1+cos2A

Forany AOR,

A _ [1-cosA A _ . [t¥cosA

(i) sin— =%, [———— (iiycos — =+, [————.
2 2 2 2

é N 1-cosA

2  \1+ cosA

(ii) cosA

(iii) If Alisnotanodd multipleof 1, then tan
Transformationsfrom product to sumsare

() 2sinAcosB =sin(A +B) +sin (A -B)
(i) 2cosAsnB=sin(A +B)-sin (A -B)
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(i) 2cosAcosB = cos(A +B) + cos (A -B)
(v) 2sinA sinB = cos(A -B)

~cos (A +B)

< Transformationsfrom sumsto productsare

(i) snC+snD =2sin %ﬁcosﬁc_;ﬁ.
(ii) sinC —sinD = 2 cos B—Hsnﬁ%ﬁ.
(iii) cosC + cosD = 2 cos B—Hcosﬁ%.ﬁ .

(iv) cosC—cosD = -2sin B—H nﬁ_z E

% If A+B+C=r1 then

(i)
(i)
(iif)
(iv)
v)
(i)
(vii)
(viii)
(iX)
)
()

(i)

sin2A +sin2B +sin2C =4sinA sinB sinC-
Sin2A +sin2B —sin2C =4 cosA cosB sinC-

COS2A + cos2B + cos2C = -1 —4cosA cosB cosC -

Cos2A + cos2B —cos2C =1 -4sinAsinB cosC -
sinA +sinB +sinC =4cosA cosE cosg.

sinA +sinB -sinC :4siné sin E cosE.
2 2 2

cosA +cosB +cosC =1 +4sin% sin % sin %

CoSA +cosB —cosC = -1 +4 cos% cos% sin %

m+ A

A B C
cos— + cosE = cosE = 4 cos
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Historical Note

In early Indian mathematics, trigonometry formed anintegral part of Astronomy. Referencesto
trigonometric conceptsarefoundin‘ SuryaSiddhanta, Varahamihira's (505 - 587) ‘ Pancha Siddantikal
and Brahmagupta's (628 A.D.) ‘ BrahmasphutaSiddhanta’ . A detailed and systematic study on the
subject wasmade by ‘ Bhaskaracharya' (12th century A.D.) inhis* SiddhantaSiromani’.

Aryabhatta and Varahamihira were great astronomers and mathematiciansof histimesin India
Varahamihira's* PanchaSiddhantika isamonumenta work inastronomy. It givesthe description of
thefive siddhantas namely, Paulisa, Romaka, Vasista, Souraand Paitamahaof earlier period. His
knowledge of trigonometry wasamazing. Several of hisformulasarethe standard resultsthat wefind
in modern trigonometry. Thetechnical termshe used for varioustrigonometric functionsare very
interesting and highly meaningful. His magnum opusisthewell known “Brihat Samhita’. Besdes
being amathematician - astronomer hewasequaly agreat hydrologist and wasan expertinlocating the

ground water deposits.
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Chapter 7
(~ ~ ~
Jugonometuc

“ Brahmagupta was the first Indian writer, so far
as we know, who applied algebra to astronomy to
a great extent”

—D.E. Smith

Introduction

In earlier classes, we have solved equations
f(x) =0 suchas ax+ b= 0 (az0), ax’+ bx+ c=0
(a# 0) etc. A solutionfor the equation f(x) = 0 means

anumber X, that satisfiesthe given equation. That is,
f (%) = 0. Inthischapter, wesolveequationsinvolving
thetrigonometric functionslike

4 sinPx - 3sinx -1=0

3tax + 4tanx -7 =0

Lo

Brahmagupta

(598-668)
Brahmagupta was born in
Bhinmal city in the state of
Rajasthan. Brahmasphuta
Sddhanta is his most famous
work. Helived and worked in the
great astro nomical centre of
ancient India - Ujjain. He made
significant contributions to
Trigonometry.
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7.1 General solutions of trigonometric equations

In this section we derive general solution of simpletrigonometric equationslikesinx=k, cosx=k
etc.

7.1.1 Definition

An equation consisting of the trigonometric functions of a variable angle 6 [ R is called a

‘trigonometric equation’.

7.1.2 Definition

The values of the variable angle 6, that is any number 6, satisfying the given trigonometric
equation iscalled a‘solution’ of the equation. The set of all solutions of a trigonometric equation
iscalled the ‘solution set’ of the equation. A ‘general solution’ of the equation isan expression of
theform 6 + f(n) where g, isaparticular solutionand f (n) isafunctionof n[J Z involving

TL

7.1.3 Example

1
The equation sn@ = > has a solution e_ . But 6 —%T[ 1%” are also solutions of this

03

equation. Thegengrd dlutionisp = 2 n Tt +E o 2nTt +56 (n DZ) If 6 isasolutionof atrigonometric

equation, then 2nm + 6 (n [JZ) isaso asolution of the same equation since 2rtis a period of all
trigonometricfunctions.

Now we define the concept of the principal solution and giveformula (or method) to find general
solution of trigonometric equeations.

7.1.4 Definition

(&) The function f (xX) = sin x has domain R and range [-1, 1]. But if we define the function

E—’—; IE = [-1 1 by f(x) =sinx then f isahbijection. Hence, for each kiJ[-1, 1],
h ' [ GDD_HID hthat sin 6= k. Thi GDD_T[—TD'caIIedh
there exists unique Hp ' 20 sue that sin 8= k. This g2 2B Is the
‘principal solution’ of the equation sin x = k. If k [JR ~\ [-1, 1], then the equation sin x = k

has no solution.
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3 LS .
For example, the equation sin x = > has principal solution x = 3 and the equation

T
sinx= > has principal solution x = 5 whereas the equation sinx= J2 has nosolution.

Now wegivethedefinitionsof principal solutionsof other trigonometric functionsinthefollowing.

(b)

(©

(d)

()

(f)

Cosine function is a bijection from [0, 1] onto [-1, 1]. Hence for k [J[ — 1, 1], there exists

unique o U [0, 7'[] such that cos a = k. This‘a’ is called the ‘principal solution’ of the
equation cos x = k.

The tangent function is a bijection from ﬁ— —; ETE onto R so that, for any

k R, theunique a O Erg Erﬁ such that tan a = k isthe ‘principal solution’ of the

equation tan x = k.
1
If k# O, cotx=k if and only if tanx = % and inthiscasetan x = K has a solution.

1
Therefore, when k # 0, these two equations (cot x = k; tan x = E) have same solution set.

But the principal solution of the equation cot x = k is the unique real number o [ (O, rr)
such that cot a = k.

Secx =k iff cosx= % The second equation hasa solutionif and only if |k| = 1. Inthiscase,
the solution set of sec x = k isthe same asthe solution set of cosx = % Theprincipal solution
of cosx = % may be referred to asthe principal solution of sec x = k.

Cosec x = k if and only if sinx = % The second equation has a solution if and only if
lk| =2 1. The solution set of cosec x = k isthe same as the solution set of sinx = % The

principal solution of sin x = % may be referred to as the principal solution of cosec x = k.

7.1.5 General solution of theequations snx=0, cosx=0and tanx=0

0)

0
If 601 HE’EH’ then snB8=0 ifandonly if 8=0. Hencetheprincipal solutionof sinx=0 isO0.

Let 8 beany real number suchthat Sn8=0. Thenthereexistsaninteger k suchthat




(i)

(i)

)
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2km < 6 <2 (k +1) m %—Iere k= %g, the integral part of zin%

Thatiss, 0<6-2km<2m

Snce 0 and 6 — 2kTt arecotermina angles, we get
0=snB=sin(0 —2km).

Henceweget 6-2kmt=0or 6-2km=T1

Thatis, 6=2km or (2k+1) 1

Thusweget sn6=0 if andonly if 8=nTt for someinteger n. Hencethe general solution of the

equation sinx=0 is x=nm+0=nT, Nn[JZ.

S

Clearly, the principal solution of theequationcosx=0 is x= > Now,

.0 T Tt
=0 = Snx—-—=0 s X—-—=nm n0OZ
cosx=0 HX ZH > TT,
- x=nn+g,n 0Z - x (2n+ 1)§T[,nD z.

T
Therefore, x=(2n+1) PO [JZ isthe general solution of cosx = 0.

Clearly, theprincipa solutionof tanx=0is x=0.
tanx=0 = sinx=0 < x=nm,nOZ.
Now, Therefore, the general solution of theequation tanx=0 is x=n7 n[JZ.

Tt

Weknow that x= 5

isthe principal solution of theequation cot x=0. Now, forany xR,

cot x=0 < cosx=0 = x:(2n+1)7—2T, ndZ.

Therefore, the gener al solution of theequationcot x=0is x = (2n + 1) g ndZ.

7.1.6 General solution of the equation snx =k (-1<k<1)

Let k[O[-1, 1] and a bethe principa solution of theequation sinx=Kk.

. O-m 10 . . .
(Thatis, a O H2 '2H and sna =k). Let 6 beany solutionof sinx= k.
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Now
sn=k=sna < snO-sina=0
00 — o

0+ o0 . _
= zcongaer—ZH =0
bra_y orsinﬁ%ﬁzo.

= COS

From7.1.5 (ii) above, we get that
[®+ a0 9 +a

gz g

- 6:(2n+1)n—a,nDZ

= 2n+1E,nEIZ
(2n+1) 7

Now, from 7.1.5 (i),
. [P-a0d_ 0-a
sin 0 = ——nn ndZ « 0= 2mt+a, nd Z.
H 2 H 2

Thus 9 = nm +(—1) o, where n 0Z.

O General solution of theequationsinx=k (-1 < k < 1) is
x=nm+()" an 0z,
where a istheprincipa (or any) solution of theequation.

Thusthe solution set of theequation sinx=k is {nTr +( = )n aln DZ} .

7.1.7 General solution of cosx =k (-1<k<1)

Let kO[-1, 1] and a betheprincipal solution of theequation cosx= k. (Thatis, a ([0, 11]).
If 8 isany solution of theequation cosx = k, then

cosO = k = cosa
= cosO—cosa=0

5 EB+0(§ .nﬁﬁ -0
- sin6+a—0 or sin62a=0
. 0+a 0+a )
Now sin 5 = - > =nm nOZ by 7.15(i)
- 0=2nm-a.
: . 0-a 0-a
Agan, sn 5 =0 = > =n1m, nOZ as above

- 0=2nm+a0, nUZ
Hence, 6 =2nm + a wherenUZ.
Therefore, general solution of theequation cosx=k (-1< k<1) is x = 2nm + a, n 0Z.
where a istheprincipal (or any) solution.
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Thus, the solution set of theequation cosx=k is {Znn +aln DZ} , where a istheprincipa
solution.

7.1.8 General solution of the equation tan x =k (k O R)

Let kOR and a bethe principa solution of tan x = k. prserve that a O ﬁ_?n EEI% If 0
. . U
isany solution of tanx=k, then
tan® = k = tana o sinb = 3ha sin® cosa — cosb sina = 0.
cos®  cosa

= sn(0-a)=0 = 06-a = nm wheren 0Z from7.1.5(j)

= O=nm+a wheenOZ
Hence, the general solution of theequationtanx=k (kOR)isx = nm+a, n0OZ,
where a istheprincipal (or any) solution of tanx = k.

Thusthe solution set of theequation tanx= kis {n T+ or| n DZ} , Where a istheprincipal
solution of tanx= k.

7.1.9 General solution of the equation secx =k (kO£ - 10 [& ))
Asmentionedin7.1.4 (€), the solution set of secx= k isnonempty only when |k| = 1. Now let

B - , _1 nd- om0
k[l(—oo, 1]D [@ )mdabetheprmc:pdsolutlonofcosx—ksothetaD E) ZHD an %

and cosa=% and hence ssca =k Now, forany x[OR,

secx=k < cosx= % = x=2nm+ a (by 7.1.7)
Thus the genera solution of the equation secx=k is 2nm + a, n O Z , where a isthe

1
principal (or any) solution of cosx= K

7.1.10 General solution of the equation cosec x = k (kO fe ~1]0 [t ))

As mentioned in 7.1.4 ( f ), the solution set is nonempty only when |k| =1. Now let

. 1
kOfew ~1]0 [ ) and o be the principal solution of sinx = o That is,

O m 0. 1 . 1
O/ —, y = =—. = :
a H > O@ HO 2% and sina K Then cosec a =k (notethat k# 0). Now, forany x O R,
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coseC X =K sinx:% = x=nm+(-1)" o n0OZ (by7.16)

Thusthegeneral solution of theequation cosecx= Kk is ntt +(—1)n onlzZ,

wherea istheprincipal (or any) solutionof sinx= K

7.1.11 General solution of the equation cot x =k (kO R)
Asin7.1.4(d) theequation cot x =k hasasolutionforal k[JR.
Case(i): Let KORN{0} and a betheprincipal solution of cotx=Kk.

Sothat a0(0,7) and cot o = k. Now, for any x OR,
1
cotx = k = tanx:E = X=nm+aqa, n 0OZ.

Case (ii) : Let k=0and a be the principal solution of cos x = 0 (i.e. cot x =0). Then

a 0(0, 1) and cosa =0. Hencea:T_ZT_ Now, forany x OR,

cotx=0 = cosx=0 = x=(2n +1)g, nOZ
- x:nn+g =nmt+qn [Z
Thus, in either case, the general solution of theequation cotx=k isnmi+a,n0Z, whereais
theprincipal (or any) solutionof cot x= k.
7.1.12 Note

1. Thesolution setsof the trigonometric equations discussed above remain unchanged even if wetake
any solutionin place of o instead of the principa solution.

2. Theprincipa solutionsand generd solutionsof the trigonometric eguationsgiven abovearesummarized
in table7.1.
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Table7.1
Serial | Theequation Range of k Theinterval inwhichthe [ General Solution
No. f(x) =k principal solution alies
1| snx=k (-1, 1] @—gg@ N1+ (<1)a, n o Z
2. cosx =k [-1, 1] [0, T 2nmt+a,noZ
£l tan x =k R %g%ﬁ nm+o,ngZ
4. COSeC X = k (=o0,~1] O[X0 ) E—g,%%\{O} nm+(-1)"a,no Z
5, secx =k (=00, —1] O[l0 ) [O, 1] ~ % 2nt+a,ng Z
6. cot X =k R (O, M nm+a,ngZ

7.1.13 General solution of the equation sin?x =k (k [0, 1])

Theeguation sir?x= k hasasolutionif andonlyif k 0[O0, 1] . Inthiscasethereexists a O R such
that sina = k. Now
Method (i): sinx=k < sn’x=sina < 1-2sn’x=1-2sn’qa
< CO0S 2X = cos2d
e 2X=2nm * 2a,n0Z
= X=nmzonUZ.
Thus, thegenera solution of theequation sin®x = k (k 0O[o, ]]) isnm+ a nOZ (where a
isasolutionof sin?x=Kk).
Method(ii) : sin®> x=k =sina < snx=sna
or sinx=-sina =sin (-a) sothat the solution set of sin? x = k isthe union of the solution sets of
sin x =sin o and sin x = sin (- a) . Thegenerd solutionof sin x =sin a isn Tt +(-1)" o, n 0Z
andthegenera solutionof sinx =sin (-a) isnmt +( )" (-a) =n m+ 4™ gn Z.
Thusthegeneral solutionof sin? x = k isn 1T £ o (wherea isasolution).

7.1.14 Note
Asabovewe can provethat the general solutionsof the equations

() cosx=k isnmzan0dz if kO[0,1] and cos?a = k-

(i) tan?x =k is nm+a,nOZ if kO[O ) and tan’a = k.
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7.2 Simpletrigonometric equations- solutions

I n this section we solveamore genera trigonometric equation.
7.2.1 General solution of the equation acosx + bsnx=c

when a b,c0OR suchthat a2+b*#0 and a+c #0.
Method (i): Giveneguationis acosx + bsin x=c¢

2XD 0 x O
agi 0 ca+cz0, xz(@2n+) T
Dl+tan 2% Elﬂanzg

0 aEJt tan —E 2btan X cHF tan? &
2 > H

0 (a c)tanzg— 2btanlz(l= (e afF o.

Thisisaquadratic equationin tang , Sothat

2b + \/4b2 — 4(c2 - az)
B 2(a+c)

_ bxyb?-c? +a?

(a+c)

O Thegivenequation hassolutionif andonlyif ¢ < a® + b?

ie. cD% Jai+ b2, \fal+ bzg

If cO 5 Ja2+ b2, \Ja% b2 thenwesove tang = k where

g
K= b+./b’*+a® —c? _

atc
2 _ — /2 +32 —2
Letkl-b+‘/b +a® -c? b Jb° +a° -c .
atc a+tc
If o, is theprincipal solution of tanlz( =k ,a liesintheinterval Erg %11]

andthegenera solutionisgiven by
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=nm+ ¢,nlZ i=12

N | X

or x=2nm+2q¢,n0Z (i=1,2).
Method (ii): Asobserved above, thegiven equation hasareal solutionif and only if

CD% Ja2+ b2, \Ja%+ b2

E.

Thatis || <\a®+Db® or |g<r where r =/a®> +b* [ ﬂ 1.

r

Choose (3 suchthat cosf = 2 and snpg :$ (If a# 0, B is chosensuchthat tanf :g
r

sincetherangeof tanx is R. If a=0 then b= +r . Hencewetake 3 tobe + g accordingly). Then
acosx+bsinx =c
O r(cgd cosx sif sinx¥ c

O cos(xP ¥ %and <1.

C
r

Hencethereexists o [0t | suchthat cosa = ? Thatis, cos (x - B) =cosa. Thus x = a + f3

istheprincipa solution. Hence x = 2nmr + a + B, n JZ isthegenera solution.
7.2.2 Note: The above eguation can aso be solved by choosinga ¢ OR suchthat a=r sing and

b = r cos¢. Butitissameassecond methodinwhich 6 = g - Q.

7.2.3 Solved Problems

1. Problem: Solve sinx =i2.

Solution
. 1 . TT m_ [ m 1 T . . .
Method1: Shx = —= =3hn — —0mr =, =,. Th 7.16, X =— isth I
ethod N 2 and 1 E 55 usby 7.1.6 ) isthe principal solution

>

and x = nTt +( -1)
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1
Method 2: Put a =0, b=1,c = ﬁ 7.2.1 (Method (ii)). Then =% and o = % Hence

x =2nm+t—+ g, n € Z . Itcan be observed that here also the solution set

_ —71t—57t£3_7'c
47 474 4

4

51 ox a:

i
=sin— and —€|——,—|.
2 SmlO an T [ > 2}

i T . .
=20 = 10 and hence 20 is the principal solution.

n
4

2. Problem: Solve sin20 =

Solution: sin26 =

General solutionis givenby 260 =nn +(-1)" —, neZ or

0=

Note: It is important to note that in the above problem we obtained the principal solutionas26 = % or

0= % Then we get general solution for 20 only (not for 0) since we are solving the equation
sin 20 = k . That means general solutionis 20 = nm +(—1)" 11, neZ butnot  =nmn + (- 1)" 20"
3. Problem: Solve tan® 0 = 3.

Solution: tan®> 0 =3 = tan 0 = + /3 = tan (i %j and * g € (i,ﬁ)-
T
Lo== 3 are the principal solutions of the given equation. General solution is given by

T
nntr—, nel.
37

4. Problem: Solve 3cosec x = 4 sin x.
Solution: Giventhat 4sin’x =3 = sinx = +

V3
>

.. Principal solutions are x = £

w3

D T
General solutionis givenbyx = nm + 3 nel.



5.Problem: If x isacuteand sin (x +10°) = cos (3x —680), find xin degrees.
Solution: Giventhat
sin(x +10°) = cos (3x - 68°) =sin (90° +3x -68°) =sin (22° +3x)

0% 10% n(180°) { 1)" (22% 3x)
If n= 2k then x+10° =2k (1800) +22° +3x

—k(360°) - 12°
2
Thisisnot valid becausefor any integer k, x isnot acute.

If n =2k +1, then x+10° =(2k +1) (180°) -22° -3x

0 2x%- k(360°)- 124 =x k(1809) 6°.

0 4x (2k 1)180% 328 =x (2k 1)45° §&°.
Now, k=0 0 x 37°, for otherintegral valuesof k, x isnot acute.
0 The only solution is x = 37°.
6. Problem: Solve cos36 =sin 260 .

) ) [t |
Solution: cos30 =sin20 = cos -20
B H

0 3¢ 2m+ 29@, i

o

056 (47 1)

N[

or 6:(4n—1)g,nDZ
0 & (4n 1)%,m Z or 9:(4n—1)g,nDZ.

7.Problem: Solve 7sin?0 + 3cos?0 = 4.
Solution: Giventhat 7sin?20 + 3cos26 = 4
0 7sin6 3(% sin29)= 4
0 4sin’e& [0 sigkt ;
O Principal solutionsare 6 = + 1—;

andthegenera solutionisgivenby 0 = n 1t ig, nlZz.

Mathematics-1A
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8. Problem: Solve 2cos?0 — +/3sin® +1=0.

Solution: 2¢cos?® — +/3sin® +1 =0
O 2sin’0+ /3 sin6 > 0
0 (2sin6 3)(sine V3F 0
O sing g (since sin® = —+/3 cannot happen)
= %[ istheprincipa solution and general solutionis given by
0 =nm +(-1)" g,n 0z

9. Problem: Find all valuesof x #0in (- 71, ) satisfying the equation

gl COSX +COS? X +... 4.

Solution: Forx # 0, wehave |cosx| <1.

Then 1+ cosx + cos? X o=
1 - cosx
NO\N, 81+ COSX+COSZX +... - 43 =82 |:| 1_ COS % Cosz)e_ = 2.
e 1 =2 cosx:l
1 - cosx 2
T - .
< X:§ or 3 (since xO¢ 1, m).

10. Problem: Solve tan® + 3cot 8 =5sec 6.

Solution: First observethat theequationisvalid only when cos6 # 0 and sin© # 0.
Now tan6 + 3 cot 6 =5sec 0

sin’0 + 3cos’6 =5sn06

sn?6+3-3sn’6 =5sn6

U
U
0 2sn’6+5snB6 -3 =0
0 (2sin6-1) (sin8+3) =0
l

sin@=1/2 (since sin® = -3 hasnosolutionas |sin 6| < 1always)

0 Principal solution is 6 = g and general solutionis n 1t +(—1)"g, nitkZ.



11. Problem: Solve 1+ sin?0 =3sin0 cos.

Solution: Clearly cos6 # 0, sowedividebothsidesby cos®8,and weget
sec? 0 + tan?0 =3tan0.
~ 2tan’06 -3tan6 +1=0
= (2tan6 -1) (tan6 -1) =0

= tanB=1 or tanB:%.

Now tan6 =1 when ¢ :%andthegeneral solutionis® = nt +£, niZ.

Leta bethe principa solutionof tanf = %
Thenthegeneral solutionis 6 = n1t + Q.
12. Problem: Solve +/2 (sinx + cosx) =+/3.
Solution: Ondividing both sidesby 2, we get
%sinx+%cosx:§
V3
2

. TU . Tt
U smzsmx COS — COosx

0 mg 3
O cos -F —
5 oAb 2
[ Theprincipal solution is x- =T i.e, xzs—n.
4 6 12
o Tt 11
Thegenera solutionisgiven by, X_Z =2nTm ig, n [z

or x:2nn+@ or x:2nn+£,nDZ.
12 2
13. Problem: Find general solution of 6 which satisfies both the equations

. 1 J3
sinf= —-——= cosf= ——.
, and 2

Solution: Given sin® = . 'S‘“g
_ _ .0
= smHTH—H— smHZT[—%
71T 11T
= sin— =sin—

Mathematics- 1A
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cosb = —@ = —cos™
2 6
= cos%n —%‘é or COSIS T %

5n I
= COS— Or COS—.
6 6

[0 Considering only anglesin (0, 2m), theonly valuesof 6 satisfying cosf = —g are%n or %T

Thus %n istheonly anglewhich satisfiesboth the equations.

Hencegenera solutionfor O is
0 = 2m'[+%n, n[Z.

14. Problem: If 6,, 8, aresolutions of the equation acos26 + bsin26 =c, tan®, # tan6, and

a+c #0, then find the values of
(i) tanB, +tan B, (ii) tanB,.tanb,
Solution: acos26 +bsin26 =c

aEﬂ.—tanZGE_'_ bD 2tan0 E_C
L+ tan29|] O + tan0]

- a-atan’0 + 2btan® =c +ctan?0
= (a+c)tan®6-2btan® +(c —a) =0 .. (1)
Thisisaquadraticequationin tan6. Since 6,6, arethesolutionsof thegiven equation, we get

that tan®,, tan®, arethesolutions of (1).

2b

0 tanB, +tanb, =
at+c

c-a
c+a

and tan®, . tan0, =
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15. Problem: Solve 4sinx sin2x sin4dx = sin3x.

Solution: sin3x = 2sinx (2sin 2x sin4x)

2sinx (cos2x — cos6x)

2C0S 2X SinX — 2c0S6 X sin X
sin3x —sinX — 2c0s6x sin x

0 2cos6xsinx sinx O
O sinx(2cos6x 1F 0

0 sinx 0O or cosbx= —%-

(i) snx=00 x O0istheprincipd solutionand x = nrr, nOZ isthegenera solution.

(i) cosbx = —% 0 6x 2?71 or x :g istheprincipa solution.

Thegenerd solutionisgivenby 6x = 2nTt iz?n ,n 0z

ntt

x=2T, T oz,
3 79

16. Problem: If 0<@<rm, solve cosB.cos26 cosse:%.
Solution: 1 = 4cosO cos208cos30

= 2c0s26 (2cos36 cos6)

= 2c0s26 (cos4 6 +cos2 6)

= 2c0s460cos20 +2cos’2 6
O 2c0s40cos26 cosd4e O
O cos46 (2cos26 1F 0

[0 cos@= 0 or cosze:—%.
(i) cos46 =0 O 46 1_21 istheprincipal solutionand

18
40 =2nm iE isthe genera solution

=]

sothat g =T, T

2 "8
Put n= 0, 1,2 Weget 1_8T :%n %T %ﬂ arethe solutionsthat liein (O, ).

ndZ isthegenera solution

3
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. 1 2T . - ,
(i) cos26 = - > 0 2& 3 isthe principal solution and

20 =2nTt i%-[, n[Z isthegenera solution
T , :
O & m+ g,ﬂﬂ Z isthegeneral solution

Put n =0,1 weget g Z?H arethesolutionsthat lieintheinterval (0, ). Hencethe solutions of the

. L T 1T 371 2
ivenequationin(0,jae —, —, —, —, —,
giveneq Om 8 3 3

17. Problem: Givenp #+q, show that the solutions of cos p8 + cos g8 = 0 form two series each of
whichisin A.P. Find also the common difference of each A.P.

Solution: cospB +cosgb =0
Mp+gp U0 MWp-dd 0
0O 2cos co 0
12 %H H 2 @H
O cosﬁmﬁ: 0 or con;ﬁ: 0
2 SH 2

dp+ql L L
=2nmt+— =(4nzx1)—
2 He n 2 ( )2
_ (4nil)T[' a0z
(p+a)
Thesolutions
T T 31 51 . . Tt
- , , , , ... forman A.P. with common difference )
p+q p+q p+q p+q (p+Q)

- . Op-q0, _
Similarly thesolutionsof 6=0
milarly thesolutions o COSBTH ae

- , n’ 3T[, 5n,....whichformanotherA.P.Withcommondifference 2m )
P-g p-9 p-q p-q (p-a)
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.
0

18. Problem: Solve sin2x — cos2x =sinX — COSX.
Solution:  (sin2x -sinx) - (cos2x - cosx) =0

O ZCos%sinﬁ ZSin%siné 0
2 2 2 2

0 Zsm—B:osﬁ sngﬁc 0
0 snx 0 or cos%+sm§-0
2 2 2
0 sin% 0 or tan3—2X——1.
. X X
(i) sm§=0 U > nmbl 20 x 2nmi Z.
(i) tan?’—zX =-1 0 3% _ %istheprincipalsolutionmdthegmerdsolutionis
% :nrr—7—T or xzm —E,nDZ.
2 4 3 6

0 Solution set for thegivenequationis {2n7r | nOZ}0 E{an— gﬂ‘\

Exercise 7(a)

I. 1. Findtheprincipa solutions of theanglesinthe equations

(i) 2cos0=1 (i) /3sec6+2 =0
(iii) Btanr B =1
2. Solvethefollowing equations
(i) cos26 -‘/_—1 8]0, 2t ] (i) tan?0 =1, 60F T, 7]
(iii) Sn39 :%, 80T, T (iv) cos*@ :%, eLI0m ]

(v) 2sin?0 =sin6, 60(0,m)
3. Findgenera solutionsof thefollowing equations.

(i) sinb = g, cosO = —% (i) tanx = _T

%\N

(iii) cosech = -2, coth = -3
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4. (i) If sin(270°-x) = cos292°, thenfind x in (0, 360°).

(i) If x<90°andsin (x + 28°%) = cos (3x — 78°), then find x.
. Find generd solutionsof thefollowing equations.

() 2sin?0=3cosH. (i) snze—cosez%f
(ill) 5cos’0+7sn?6=6 (iv) 3sin*x+cos*x=1
. Solvethefallowing equationsand write genera solutions.
(i) 2sin@ -4 =5cosH (i) 2++/3sec x — 4cosx =24/3
(i) 2cos?0+11snB=7 (iv) 6tan?x— 2 cos’* X = cos 2X

(V) 4cos?0++/3 =2(x/3+1) cos® (Vi) 1+sin2x=(sin 3x - cos 3x)?
(vii) 2siml?x+sn?2x =2

. Solvethefollowing equations

(i) 3sin6-cosB =+/2 (ii) cotx + cosecx =+/3

(il) sinx++/3cosx=+/2

. Solvethefollowing equations

(i) tanB+sec® =+/3, 0<B<2T

(i) COS3x+Cos2X :sin3—2X +sin§; O<sx<2m

(iii) cot? x—(v/3+1) cotx++/3 = 0; 0 <x <g

(lv) secx[osbx+1= 0;0<x<2T

[11. 1. (i) Solvesinx + sin 2x + Sin 3X = COS X + COS 2X + C0S 3X.

, 21 . . 3 ..
(i) If x+ y:? andsinx+siny= > findxandy.

(i) If sin3x +sinx+2cosx=sin2x+ 2 cos’x, find the general solution.
(iv) Solve cos 3x — cos 4x = cos 5x — cos 6X.

2. Solvethefollowing equations.

(1) cos26 + cos 86 = cos 50 (if) cos@ —cos76=sin40

(i) SNB@+sin50=sin30, 0<O<TL

3. (i) If tanpB =cot g6, and p # —q show that the solutionsarein A.P. with common difference
Tt

p+q’




5.

6.
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(i) Show that thesolutionsof cospB =sin o form two serieseach of whichisan
A.P. Find aso thecommon difference of each A.P. (p # +0q)
(i) - Find the number of solutions of the equation tan X+ sec X =2 coSX;
cosx # 0O, lyingintheintervial (0, ).
(v) Solvesin3a =4sna sin(x+a)sin(x—a) where a z ni,n OZ.
) . (il 1
i) If tan (TtcosB) = cot (11sin B), then provethat cos%—— =+r——.
() Iftan (rrcose) = cot (msin®), thenp 207 %202
(i) Findtherangeof 6 if cos®+sinBispositive.

If a, B are thesolutionsof theequationacos@ +bsin®=c, wherea, b,cR
andif a2+ b?>0,cosa z cosBandsina # sin3 then show that

2bc 2ac

() sna+sinB= (i) cos a+cosP =

aZ_I_bz 8.2+b2
(i) cosa.cospB = ¢ -0’ (iv)sina.sinf = ¢ -a
ii . = iv : =

a’® +b’ a®+b’

(i) Find the common roots of the equations cos 2x + sin 2x = cot X and 2 cos’x + cos?2x = 1.

(i) Solvetheequation \/6—cosx+7sin2 X +cosx =0.

(i) If ftanx|=tanx+ colsx and x 0 [0, 2rd, find thevalueof x.

Key Concepts .

If k Of 1,1], thentheprincipal solution@of sinx = k liesin E—g ETE andthegeneral solution
isgivenby nrr + (-1)"0, n0 Z.
If k OF 1, 1], thentheprincipal solution 8 of sinx = k liesin [0, 71] andthegeneral solutionis

givenby 2nm+6,n0Z.

If k OR,thentheprincipal solution 8 of tanx = k liesin ﬁ? Enﬁandthegenerd solutionis

givenby nr+ 6, n0Z.

i
If kOfe ~ 10 [& ),thentheprincipal solmioneofcosecx:kli%in[—? 0) O (O,%ﬁ

and thegenerd solutionisgivenby nmr + (-1)"6, n JZ.
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- . o LI |
@ IfkO€ew ~ 10 [& ),thentheprincipal solution ¢ of secx =k liesin [0, E) O (EJT ]
andthegenera solutionisgivenby 2nmr+ 6, n0Z .
< If kOR, thentheprincipa solution 6 of cot x= k liesin (0, 1) and the general solutionisgiven
by nm+06,n0Z.
< If k0OJ[O,1], then the general solution of the equation sin?x =k is nm+a,n0OZ
(wheresin?a = k).

<« If k0OJ[0,1], then the general solution of the equation cos’?x =k is nm+a,n0Z
(where cos’a = k).

Similarly, weget that the general solutionsof theequations tan? x = k , cot? x = k, sec? x = k,
cosec’x = k areof theform n7r £ a whenever asolution exists.

< Theeguationasinx+bcosx =c (a,b,cOR anda? + b? # 0) hasasolutionif and only

if c?< a® + b?.
y

Historical Note

Brahmagupta (7th century A.D.) isoneof themost cel ebrated mathemati cians of ancient India.
Hewroteastandard treatise“ Brahmasphutasiddhanth” on ancient Indian Astronomy. Brahmagupta
isfamousfor many contributionsto astronomy, trigonometry, algebraand geometry. Thesimplerule
to help thememory for the sinefunction, \/ (0,1, 2,3 4)/4 =sin (0, 30, 45, 60, 90)0 isfoundin
theworksof Brahmagupta. Thisshows thelevel of advancement of trigonometry inthose days.

Thehistorian al-Biruni (ca- 1050) in hisbook Tariq a-Hind statesthat the Abbasid Caliph al-

Ma’ mun had an embassy in Indiaand from Indiaabook was brought to Baghdad which wastrand ated
into Arabic as Sindhind. It is generally presumed that Sindhind is none other than Brahmagupta’s

Brahmasphuta-Siddhanta.
Bhaskaracharya hailed Brahmagupta as* Ganakachakra Chudamani”, preciousjewel amidst
thecircleof Mathematicians.
Answers
Exercise 7(a)
. 1. (i) 45°135° (i) 150° (iii) + 176
O9m1lmi9 m 31
— = i) £—,+—
>0 101010 10 1) F40%y
ST _Amm2m7 M8 w5 5T
(i) 9’ 9'9°9' 99 (|v)6,6 (v) 5' 6
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3. ()
(i)

4. ()
5 ()
(iii)

1. 1. ()
(i)

v)

(vii)

2. ()
(i)

3. (i)
(iv)

1. @)
(i)

(iif)

2. (i)
3. (i)
4. (i)
6. ()

21
2nm+—,n[Z (i) 2nT[—E,n [z
3 6
2nn—7—T,n (Z
6
112°, 248° (i) 8°35°
L1
2nm 2, n0Z (ii) 2nnig, n 0z
nni%,n 0z (iv) nrmor nTt ig,nljz
2Nt iz_n, n0z (i) 2nnigor 2nni%n,n z
nTt +(—1)”g,nDZ (iv) nm ig,nDZ
T 11 . N s
+— +— — or (2n+1) —,n00Z
2nT[_3 or 2nT _6,n D4 (vi) 2 ( ) 2
(2n+1)1—T, nnif,nDZ
2 4
m T . L
0=nm+HAD"—- +,n¥ i) 2nm+—,n[Z
(D" + (i) 2T+ 2
2nm +5—T[,2nrt —-E,n 4
12 12
6 71 7 1 1Y 7 y 7 6’ 4
T om3NSM5 N7 Ml N7 m
6’4 46 4 6 6 4
o + 28 AT, T 7
2 8
X =2n1 +E, y=lT—2nTtor x:2nn+1—T, y = lT—2nT[n D4
2 6 6 2
n+1)—, nTt—, 2N Tt +-,2n TN iv) (2n+1)—, nm, n
@ 1)’T :1[2 2”2 Z (iv) (2 1)’9T 0z
T 2nTT 1T 1 T M2TS5 T
(2n+ 1)—? 3 n0Z (II)Ior— (1)— (|'|)6’3’3’6
]
21 (iii) 2 (iv) N £~
ptq 3
%nn—— 2nn+3—n§
11t
(2n+1)z,nDZ (i) Nosolution (i)



Chapter 8

Jnuvewse Jnigonometiic

Functions

“If there be light, then there is darkness; if cold,
heat; if height, depth, if solid, fluid; if hard, soft;
if rough, smooth; if calm, tempest; if prosperity,
adversity; if life, death”

— Pythagoras

| ntroduction

Letusrecall thatif A,Baresetsand f : A . Bisa
bijection,then g : B - A istheinverseof thefunction f if
gof =1, (IndentityonA) and fog =Ig.

Thisfunction g isuniqueanditisdenoted by f

Equivaently, afunction f : A _. B hasinverseif and
onlyif f isabijection. Theinversef™:B - A of fis

defined by f1(X) =y, where f (y) =x.

We have come across many functionswhich possess
inverse and functions which do not possess inverse. Al
trigonometric functionspossessinversesif wetakethedomain
suitably. Inthischapter, welearn about inversefunctionsof al

trigonometricfunctions.

James Gregory
(1638 - 1675)

Gregory was professor of
mathematics at &t. Andrews and at
Edinburgh. He was equally
interested in physics and published
a work on optics in which he
described the reflecting telescope,
now known by his name. In
mathematics he expanded functions
ininfinite seriesand was one of the
first who distinguished between
convergent and divergent series.
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8.1 Toreduceatrigonometric function into a bijective function

Let usconsider thefunction f : R - [~1,1] definedby f (x) = sinx,foral xOR.
Thisfunction f isasurjection, but not an
injectiononRsince f (2nm+ x) = f (x) forall
nOZ and xOR which means that, for any i
t Of 1 1], thereareinfinitdly many x OR such AL ‘

that f(x) =t.But, forany tOf 1,1, there 1

-
existsunique x [ [-,—T[ Igsuchthat f(x) =
02 20

O 1ol .
Also 05 Z0isasubinterval of Fig. 8.1
02 20

largest length on which sinefunctionisabijection
(seeFig.8.1).

) O-1t TD
In other words, the function 9: 3=,

02 2F ~ [-11] defined by g (x) = sinx for all

x O [-,—;[ %E isabijectionand henceit hasinverse. Theinverse g~ of g isafunctionfrom[~1, 1] onto
U U

Ut

H2' 2

We denotethisfunction g by sin anditsinverseg™ by Sin"tor arc sin.

8.1.1 Definition: Thefunction Sin™: [-1, 1] - D— —Tg defined by
2]

_ O 1
Sin?'x=0 - GDE,—Z ZEand sinf = x,

for all XD{- 1,]], iscalled the ‘inverse sinefunction’. Thisfunction isalso denoted by ‘arc sin'.
. Ot 0

812 Note If X F 1,0), then SIn* x5, 05 and if x1(0, 1], then Sin™ 1] ﬁ),g'éand
[ [

Sin~'0 = 0. Wecandefinetheinversatrigonometric functionsof cosine, tangent, cotangent, secant, cosecant
smilarly by taking thedomain suitably asgiven below.
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8.1.3 Definitions

(i) Thefunction Cos™:[-11] - [0, ] isdefinedforal xOf 1,1 by
Cos™x =0 ifandonly if 6 0[0, 7] and cos 6 = x.

(i) Thefunction Tan™:R - ﬁ%" gﬁ is defined for all x OR by
Tan™x = 0 if and onlyif © Dﬁj,ﬂﬁ and tan 0 = x.
(iii) The function  Sec™: (co, —1] 10 )~ @) % H_ rr is defined for all

xOfe - 10 [& )by Sec’x =0 ifandonlyif 60 @E% DHg,nD%

and sec 0 = X.
) . _ (1T . 1m. i
iv) Thefunction Cosec™: (-, —1] O[10 )- ,0@ 0, — is defined for all
(iv) ( ] O ) 53 1% 55

xOfeo ~ 10 [& ) by Cosec x =0 ifandonlyif

(T 0. m
0 — d =X.

0 E?O% HO, 2%an COSec 0 = X

(v) Thefunction Cot™: R — (0, ) isdefinedfor all xOR by Cot™ (x) =9 if

and only if 6 0(0, 77) and cot 6 = x.
All theabovefactscan be understood easily fromthefollowing table.

8.1.4 Domainsand ranges of theinversetrigonometric functions

Table8.1
I nver setrigonometric Domain (x) Range (y)
function y=f (x)

- - 1]
y = Sin"'x [-1, 1] H2 ' 2H

y = Cos™x [-1, 1] [0, ﬂ]

-

y = Tan™x R B_ 25

(b OO, 1

y = Cosec™ x (—oo, —1] D[lPO ) EE’OH]HO' -

y = Sec™x (=e0, 1] O[ 150 ) @3 gDHjDEg , nD%

y = Cot™x R (0, T




8.2 Graphsof Inversetrigonometric functions

In Chapter 6, wehavegiventhegraphsof al thesix trigonometric functions.
Now wedraw the graphs of the six inversetrigonometric functions by taking thedomain on X-axis

andrangeon’Y-axis.

w2

| 2

Mathematics- 1A

T T >
-1 0 1 X
—TU2 A
-4 y=Cottx
Fig. 8.5
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8.3 Propertiesof inversetrigonometric functions

Inthissection welearn some e ementary propertiesof inversetrigonometric functionsdefinedin 8.1.
Thesepropertieswill beuseful to solve easily many problemson inversetrigonometric functions.

8.3.1 Theorem

al

X
(i) For xOf 1,000 (0,1, Cos*x Sec i
X

() For xOf 1,00 (0,1,Sn™x Cosec

41
X

(iv) For x<0, Tant x = cot'l-n

Pr oof X

(i) For x>0, Tan™ x = Cot~

() Let xOF 1,000 (0,1 and suppose Sin"x=0. Then o[

sinf=x and 6 #0. Hencecosece—i 1
snd X

Therefore, 8 = Cosec ™1 = or Sin"x = Cosect=

X

X |~

(i) Wecan provethisasabove.
(iii) Let xO (00 ) andsuppose Tan"'x =6.

a

b=

2

T

H2 ' 2

us
B

Then 6 O HO T2 and tan6 = x. Then cotezé and emﬁ),gﬁ

O Cot_l—l= 0= Tan x
X

(iv) Now, let xOfe , 0)and Tan™x=6. Then 6 O E

|\>I:|

Thatis,

9+T[E|%£
1

gt _ 0
Therefore, 0 + mOF—,m and cotf = —.
H2'"H X

,nﬁandtan (m+0)=

0 Cot‘1—1= O+ TT=Tr+ Tan_li or Tanl=

X

1
X

I:I:H:I

= Cot

a1

X

andtan 8 =x.

- TL
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8.3.2 Theorem
) Ot 1 .1
F -
(i) For 6 O 97 20 Sin™* (sin0) 0,

(i) For x Of 1,1], sin(Sin"x§ x.
Proof

. O mn 1 . .
i) Let 0 07/ —, — and write x =sin0. Then X .
0 H2 2H o
Hence Sin™x=0. Thatis Sin™ (sin6) =0
(i) Let xOF 1,1] andsuppose Sin"x =9 . Then

GEIE —;,%E and sin® = x. Thatis, Sin(Sin’lx) =X,

We can prove similar results for other inverse trigonometric functionsalso. We state them in the
following theoremwithout proof.

8.3.3 Theorem

1. If 80[ogt], then Cos™ (cos0)=0 and if xOF 11] then

cos (Cos‘ 1x) = X.

2 If emﬁ g

I\)IE

, then Tan™* (tan®) =0 and if xOR, then

tan (Tan‘lx) = X.
3. 1f 00(07t ), then Cot™* (cot6) =0 and if xOR, then cot(Cot™x) = x.

n Om 0 4 _

4. If GD@, 2% gt [ then Sec (sec6) =6 and

If xXOf e + 13 [& ), then sec(Sec‘lx):x.

0 1 U, ™ -1
5. If I I th =9 and
GDH 2,0% HO’ o en Cosec™* (cosec 6 ) = 6 an

if xOf e ~ 1J0 [& ), then cosec (Cosec"lx):x.
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Inthefollowing wecheck which of thetrigonometric functionsareodd or evenor neither. Inotherwords
wefindtheformulaefor f(—x) where f isaninversetrigonometric function.

8.3.4 Theorem
L1f xOf 19, then sin™ (-x) = -Sin.
1f xOF 11], then Cos™ (-x)= m-Cos™x.
. If xOR, then Tan™ (-x) = - Tan7'x.

. For xOf o ~ 10 [& ), Sec™( ¥ m- Sec'x.

. For xOf o ~ 10 [& ), Cosec™( x - Cosec 'x.
Pr oof

2
3
4. 1f xOR , then Cot™ (-x) =m - Cot™'x.
5
6

1 Let xOf 1 1, then —xOF L.1. If Sin"(~x) = 6, then GDH—T[ s

and - x = sin.Sothet x =— sin® =sin (- & and - GDEE I‘E Hence Sinx = - .

Thus 6 = — Sin™*x. Therefore Sin™ (- x) = = Sin7'x.
2. 1f xOF 11 ,then -xOf 1,1]. Let Cos™(-x) =6. Then 0< 6 < mand

- x=cos@. Sothat x=-cosB = cos(m-6 and O< M-0<T

Thus Cosix = 1 - 6. Thatis, 8 = 1t —Cos x . Hence
Cos™ (-x) = m -Cos™'x
Similarly, wecan prove(3) to (6).

8.3.5 Theorem

1. 1f GD[O,n],then Sin™* (cosB) =— - 6.

3. If 80(0m ), then Tan™ (cot8) , O
4. If GDE T—T,%ﬁ,then Cot™* (tan®) =T - 6.
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Proof
1. Let60for]. Then —1<cosh <1. Now

(=T 1M

Sin (COSO) =Sint |ij H— % and -00 ET,EH
Hence Sin™ (cos®) = E — 0, by Theorem 8.3.3(1).

2 LeteDET[ T Then -1< sin 6 <1. Sothat

R A S | AR T_on
Cos (SInO) = Cos EIPOS BE QH% and > 0 [O]T]
Hence Cos™(sin0) = ;[ -0, by Theorem 8.3.3(1).

Similarly, we can provetheremaining results.

8.3.6 Theorem

1. Sintx=Cos?.1-x* if 0<x<1.

2. Sntx=-Cost1-%° if —1<x<0.
Proof
1. Let0<x<1 and Sin"'x = 0. Then oses’—;.
Now sin® = x and hence cos® = /1 - x*> and 0 < \/1—7s1.
Therefore Cos™ /1 - x> =6 =Sin"x.
2. Suppose -1<x<0 and Sintx=90. Then —ESO <0.

2
Sothat sin® = x and cosf = /1 — x* (since cos® > 0). Now

cos (- 0) =41 -x* and 0< -6 s;.
Hence Cos™ (\/1 - x2) = -0 = -Sin"*x. Therefore, Sin™'x = — Cos™ /1 - x°.
We can provethefollowing theorem asabove.

8.3.7 Theorem

O O
1 Sintx=Tan 020 if xO¢ 11).

H/l XH
2. Cos™x=Sint1-x if xd[0,1].
3. Cosx=m-Sinty1 -x* if xOF 10).
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U [ U

4. Tan'x=Sin™* Diﬂ Cos‘lD L for x>0.
Hy1+ x*H Hy1 + xH

Now we prove animportant theorem.

8.3.8 Theorem

1. Cos*x + Sin~ x—g for all xOF 1,1].

2 Tan_1x+Cot‘1x:g for all xOR.
3. Sec'lx+Cosec'1x:1—2T foral xd¢ o — 10 [d ).

Pr oof

1. Let xOF 11] and Sin"tx=6. Then © DE and sind = x. Now

NI:l
D“’D'a

. om0 T
=sin@ = B-—e —-00 :
X =sn cos > Hand 5 0 [0t ]. Sothat

Cos x = ; —9 =" —Sin"x

Therefore, Cos™*x + Sin"*x = g foral xOF 1,1].

Tt Tt
2. Let xOR and Tan'x=0. Then > <9 <§ and tan0 = x.

Now, X =tan0 :cotDT[—eD and O<E—6<n.
5 H 2

Thus Cot™*x = m_ 0 - —Tan"'x.
2 2

Hence Tantx + Cot * x :2 foral xOR.

_ 0T
3. Let xO ~ 10 and Sec’lx=0. Then 60 @, and
Cite 20 ) end e 928 B

secO = x. Now
- Tt

X=sech = cosecH— OHand——OD 0

Thus Cosec™t x = n_ 0 :g —Sec 1x Therefore,

Sec‘1x+Cosec'1x:g foral xOf o ~ 10 [& ).
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8.3.9 Theorem

If x=20,y=0 and x* + y* <1, then
Sin'x +Siny :Sin'l{x\/l— y? +y\/1 —xz} _

Pr oof
Suppose x=0,y=0 and x*+y?<1. Let Sin x=a and Sinly = .

Thena,BD@),gEand sina = x,sinB=y. So cosa =4/1- x* and
. . Ll
= — 2 (since cosa, cosp arenonnegativeas q, EI%),— .
cosP =41 - y* ( B ey B ZH)
. (1)

Now O<sa+B<sT
Also  cos (o + B) = cosa cosP - sina sinf
e

:\/1—x2 \/1—y2 -Xy

Now x*+y*<1 0 % x= y%2 00
0 (& <) vk 2y

O ,/(1 x2) + y> xy (since xy=0).

Hence from (2), cos (a +B) =0. So ogo(+[5gE from (1)

1 2 ¥ ¥ KRy

sin (a + B) =sina cosP + cosa sinf

Now
:x\/l—yz +\/1—x2 y .
Hence a+p=Sn" (xwll—y2 +y\/1—x2)

or Sin'x+Sinty = Sin'l(x\/l -y? + y\/l —xz).
We can provethefollowing formulae also asabove. We state them without proof.

8.3.10 Theorem
1. If -1<x y<1 xy<0 and x* + y*>1, then

Sin'x+Sinty=sin? (x\/1 -y? +y4/1 —xz)_

2. 1f 0<x,y<1 and x*+ y*>1, then

Sin'x+Sinty=m-Sin? (xwll —y? +y4/1 —xz)_

3. 1f -1<x, y<0 and x* + y*>1, then

Sin'x+Sinty=-m-Sin? (xwll —y? +y41 —xz)_
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10.

If 1< x,y <1 and x* +y?<1, then
Sintx-Sinty=sin? (xﬂ—y 1—x2)_
If 0<xy<1 and x* + y*>1, then
Sintx-Sinty=sin? (xﬂ—y 1—x2)_
If 0<x<1,-1<y<0 and x*+ y*>1, then

Sin'x-Sinty=m-Sin™* (xwll —y? —y 41 —xz)_

If 1< x<0,0<y<1and xX*+y*>1, then

Sintx-Sinty=-m-Sin™® (x\/l - y? —y\/l —xz)_

If -1< x,y<land x+y=0,then

Cos*x+ Costy = Cos'l(xy —\/1 - X \/1 - y2) _
If -1< x,y<1 and x+ y <0 then
Cos'x + Cos™ty =2m —Cos‘l(xy —\/1 - x? \/1 —y2) _

If -1< x,y<1 and x<y then

Cos*x - Costy = Cos‘l(xy + \/1 - X \/1 - yz)_
If -1<y<0,0<x<land x=y then
Cos*x-Costy = —Cos'l(xy —\/1 -x? \/1 —yz)_

Now wederiveaformulafor Tan™ x + Tan™ y inthefollowing.

8.3.11 Theorem

Suppose x>0 and y>0

(i) If xy<1,then Tanx+ Tanly =Tan? Dx+y[|-
Y W
—XyQ
(i) If xy>1,then Tanix+Tenly=m +Tant X7 Y5
0
- XyQ
(i) If xy=1,then Tan_lX+Tan_1y:g_

(iv) Tanix-Tanly=Tant XY

1+xy'
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Proof: Let @ = Tan*x and B =Tan'y. Then tana = x and tanB = y. Since X,y are positive,

Wegaa,ﬁmﬁ),gﬁ. Hence O<a + 3 <.

If xy#1, then tana.tanf8 #1, sothat a + f3 ¢g and

tana + tan _ Xty
l1-tana tan 1-Xxy - (D)

tan (a + B) =
. X+y m
(i) Let xy<1. Then tan (a +B):l >0, by (1). Hence0O<a +f <5
/ - Ox+y0

-
- XyQ
1 Xty

1-xy

0 from (1) a+pB =Tan
Therefore Tan™*x + Tan™ty = Tan

(i) Let xy>1. Then from (1), tan (a + B) <0. So

m -
E<or +B<1m. Thus 7<ar +f3 -m <0 and

tan(a + B —m) = —tan(mr - (a+ P)) =tan (a + ) :X_+3; from (1).
Oat B 1& Tan t X1Y
1-xy

+
Thus Tanx+Tanly=m+Tant 22 Y
1-xy

(i) Let xy=1. Then y=

X |~

T

Now Tan™x+ Tan'y = Tan™x +Tan? L =Tanx +Cot*x =5

X
(iv) Let x >0 and y>0. Suppose Tan*x=qa and Tanly=j.

Then a,BDﬁ), gﬁ and tana = x, tanf =y.

tana —tanf _x-y
1+tana .tanf 1+ xy

Now G_BDE%T’;@ and tan(a - B) =

Hence, ¢ - g = Tant X~ Y.
1+ xy
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4 Ux-y O

-
+Xy[O

Similar totheresultsintheabove Theorem 8.3.11, wed so havethefollowing. Westatetheseresults
without proof.

Therefore, Tan*x — Tan™'y = Tan

8.3.12 Theorem

: - - ax+y O
() If x<0,y<0and xy<1, then Tan x+ Tan 'y =Tan* -
%-Xym

(i) If x<0,y<0and xy>1, then

Tan*x+Tanly=-m+ TantEXFY E
E_ XyQ
ax—-y O

i) If > -1, then Tantx-Tan"ly =Tan .
(i) 1f xy y +XYH

(iv) If x>0,y<0 and xy<-1, then

- - ax-y O
Tan'x-Tan'y=m+ Tan™* 0.
E+XYEI

(v) If x<0,y>0 and xy< -1, then

4ax-y O

+xyd
(vi) If X, y,Z havesamesignand xy + yz + zx <1

Tanx-Tan"'y=-m + Tan

1 Dx+y+z—xyz%
-Xy-yz-zxg
On substituting x =y in the above formulae, we get the following .

8.3.13 Corollary

then Tan'x+ Tan™'y + Tan™z =Tan

1 10
) . _1 = - —1 _ 2 . D ’_
1. 2Sin*x Sin (2x\/1 x), if X BJ_E \/EH
= n—Sin'l(wall—xz), if x Dlz,lﬁ
= -m-Sin? (2xw/1—x2), if xDﬁl _Tzlﬁ
2. 2Cos’x = Cos(2x-1), if x0[0,1]

= 27 - Cos™ (2x2 —1), it xOf 1,0].



3. 2Tantx

. 2Tan'x

. 2Tantx

. 3Sintx

. 3Costx

. 3Tanx

Mathematics- 1A

2’; Cif xOf 1,1)

if xO (10 )

., O 2x
-+ Tan? B—ZD, it xOfew ~ 1).
oL-x0

,if xOf 1,1

2
);2, if xO(1 )

-7 - Sin?

, f XD(-oo - 1)

- xcd
Cos™ §+—§2D’ it xO[0e )

-1 Eﬂ.—XZD .
- Cos 81+—x28 it xOf e ,0].
nt (3x—4x3), if 0

m-Sin? (3x - 4x3) , if xO

-m-Sin™? (3x —4x3),

if XDH L—E.
Cos* (4x3 - 3x), if xO 5 15

2m - Cos™t (4x3 - 3x), if xO

21 + Cos * (4x3 - 3x) ,

Tan [175 if xO
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8.3.14 Solved Problems

1. Problem: Find the values of the following.
010

(i) Sin™ ﬁ%ﬁ (ii) cm‘%—@% (iil) Tan H/3H
| ] ) _ 2020
(iv) Cot™ (- 1) (V) Sec l(_ \/E) (vi) Cosec™ %H

Solution
O g -1

-1 -
0] SmEFGH > and ?DE’EED Sin H?'E e

m_ 1 n o 7
(iii) tang_\@and6DBT’ZHD Tan %E 5

(iv) cot— = cotErT H = —cot _71_ -1 and

37"5(0 m) 0 Coti( B 37".

v) Sec—-SBCEfT 4H —sec—:—f and
?ZTDE%T DHD Sect( V2) 374".

4 2 m
(Vi) coseC—-— d_Dﬁ) Cosec ! 2 T
28" J3

2. Problem: Flnd the values of the following .

. - O, 4m0 . 0 4nd -1 4nQd

(i) Sin ?n E (i) Cos B:os BH (i) Tan ﬁan 3H
Solution
(i) Sin™? Slsmél—nﬁ = Sin? Eflrﬁn+%§ :Sin‘lﬁ -sin g

Gald o -m T O-1m m

BSIn Hﬂ——Slnce—Dé]?z{9
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() Cos™ ﬁ:osll—nﬁ = Co BCO%NJrEH = Cos 0 —cosE
= Cos‘lﬁsos Znﬁ = 2—” , since %TD(O m),
(i) Tan™ ﬁan—a = Tan™ %aan+ h Tanﬁ tan—g

= , Since — EI
3’ H 2H
3. Problem: Find the values of the foIIOW| ng.
B 150 . _1 250 DI. -1 240
1) sSinfCos ~— I tan — iif) cosjlan ~—
() snfPos™ 25 (i) ten e 25 (i) cos (Tan” S0
Solution:
O 1127 12

o 1 50 _ . _
(i) snﬁ:os EH_SmHS'n 1—:5 =13
250 124
(ii) tan%ecl—ﬁ—tan Tan 75 ==
0.7
23]

(iii) COSH an” _H = COSHCOS

4. Problem: Find the values of the following.

(i) sin® ETan‘lgﬁ (i) sin EE sint g%
(iii) cos Epos‘1 ﬁ-%ﬁ - Sin'ﬁ%% (iv) sec? (Cot'13) + cosec? (Tan'1 2)

Solution
3

o 430 _ . Oe-130 _

(i) sin ﬁl’an ZH_SmHSIn E_E
Therefore, sin® ﬁl’an'lgﬁ = %irﬁTan*%E2 ==

(ii) sin%—an*%%—sma—+8m E% (since Sin™* (-x) = -Sin™"x)

3

= cos%in'lgﬁ :cos§Cos'1% ==
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o4 _1D—2D_ _1|:l2 O 2] ~.a2
(iii) EpOS B—H B:;H% HT[ -Cos™ g Sin 3

(since Cos™(-x) = 1t —Cos™ x)

1

. 020 I 2D Tt
Hence cos {Cos - Sin =cos — =0.
- HaH 2
(iv) If Cot™3 =0, then show that cotf = 3

Therefore sec?0 =1 + tan?0 =1 +%§2 —E.

Thatis, sec® (Cot‘l (3)) -1
Again,if Tan™*2 = a, then tana = 2.

Therefore, cosec’a =1+ cot’a =1+

Thus, cosec? (Tan' 2) =g.

-I>|H
J>IU1

Hence sec’ (Cot‘13) + cosec? (Tan‘lz) _130 + % = 8__

wW
a1

5. Problem: Find the value of Cot‘ll + Cot™?! %ﬁ

Solution: We know that COt_l; =Tant2 and cOt‘l %H_ Tan™3.

By 8.3.11, (ii)
O
Cot L + Cot'E = Tan2 + Tan 13 = 11 +Tan ™ F27 o0
2 3 %— 67
=m+Tan™"( 1) o :3—T[_
4 4
6. Problem: Provethat s|n‘14 +Sin™t 7 sm-ly
. 5 25 125
Solution
Method (i):
a4 7
Let  Sin'Z=qg and Sin"t —
25 g
7
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so that cosa:g, cos :% and o +B0O(0g)

Now cos(a+B) = cosa cosp - sina sinp

_3 24 _ 47 _ 4
5 25 55 125
T
Hence o+ B0, —7. Now,
P ﬁ)zﬁ
. 4 24 3 7
sn (o + snoacosp+cosasSNB=—.— + —.—
( B) B B= 5 25 5 25
:96+21:117
125 125
wep= st B
Hence, Sin~ £+S|n'17 = Sin'ly.
5 25 125

Method (ii)

Weknow that Sin™*x + Sin™y = Sin™* (x\/l—y2 +yq1 —xz).

if x>0,y>0 and x* +y? <1

Therefore, Sin‘lf' + Sin‘ll =Sin™? % /1_£ + l D
5 25 E3) 625 25 g

_ g 424, 730 _ o OuT
525 2557 o Hial
7.Problem: 1f xOf 1,1), provethat 2Tan™x = Tan™ . 2X2 :
- X

. T Tt
Solution: Let XO€ 1,1) and Tan™ x = a . Then tana = x and 5 <a<. Now

L d2x O 44U 2tana U - . On 1™

Tan 1D—D_T '5—="—=f =Tan? (tan2a) = 2a, since 2a0F —, —

- X0 01 - tan” o ( ) H 2 2H
OTan—2X = 2Tanx

1-x°
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8. Problem: Provethat Sin'1i1r + Sin‘li + Sin -t
5 13 HesH 2

Solution: Let Sin™* g = A and Sin'11—53 = B. ThenA, B areacuteangles

and sinA :g, sinB :i. Hence cosA ::—53, cosB :E. Now,

cos (A + B) = cosA cosB -sinA sinB
312 4 5 _ 16

" 513 513 65

0 A+B Coslgl] sn% snl2 cost 6 1 gn U6
65 5 13 65 2 HesH:
0 Sin™ 14 Sint = S, Sin'lE: n
5 13 65 2
9. Problem: Provethat Cot™9 + Cosec™ @ = g
Solution: Write Cot™t9=a and Cosec @ =B
Then cota =9 and cosecﬁ—@-
T 1 4
0 €&ad B< — and tana==,tan3 =—. Now
B 2 9 B 5
1 N 4 41
tana + tan 9 5 45
(@+F) l-tanotanp ,_14 41
1 4 4 95 45
, 1
Since —=.—=—<1,weget a+p=—.
9 5 45 g B 4
Hence Cot 19 + Cosec™ ﬂ _E.

] 0l
10. Problem: Show that cot FSin~t \/1—73 =sin D1'an'1gD.
? 78 "HT
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Hence cota =2 Thatis cot = 'n‘l\/l:?’m- 2
Ny S T i= T
Suppose Tan'lg =B. Thatis tan :%

Sothat SNB=—2. That is sinﬁT

J13

an_lglj = i
3H 13

o, ., /130 . 120
Hencecot?n \/%E—sm ﬁ]’an SH'

11. Problem: Find the value of tan %Tan'1 Ao EE.
O BH 4

Solution: Let Tan‘1é=a. Then o<o(<1_2T and tana =

gl

2tana

Sothat tan2a = >— =
1_tan a 1_

_1EU.D_L[D
Now, tan %Tan %H 4%

tan2a — tanE
4

_ndo_
tan %O( 45 "

tan2a .tanlT
4

N_I:|

12. Problem: ProvethatSin‘lég1 + 2Tant =

41

Solution: Let Tan 3 = B. Then 0 < < g tan B =

Wl

2tanf3 2.

Now tan2f3 = =
B 1_tanzB 1_

2 9 _3 T
=— X— =—_Th —
38 "2 usO<2[3<2

OlkRwl~, ™

O cos2 = g
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Thus 2B =Co 14,
Now Sn'242Tan?y = gnt2 4 cost2 = T
5 5 2
. 10_ . —135
13. Problem: Prove that cos% H H :E
. 11 1 1
Solution: Let Tan S =a and Tan™ = =B-
Then tanO(:l and tan[3=l. Also 0<a,B<E
7 3 2
2 1- !
Now, cos%Tan‘1ED = cosZazl_tanza - 49 _48_24
70 l+tana 4, 1 50 25
49
5 1
tn =+ O tan@ = 2tan[25 = 3 2, 93
3 1-tan’p 4,_1 3 8 4
9

L0 _

sin (4p) =sin (2(2p))

Now, Sin BdTan

5 3
= ZtanZB = . Z = § X E = %
1+tan?28 4,9 2 25 25
O 10
Therefore, from (1) and (2), weget cos %Tan _H_ smH4Tan E

14. Problem: If Sin"tx +Siny +Sin™z = m, then prove that
X'yt + 2t Ay P :2(x2y2 +y* 7 + zzxz).
Solution: Let Sin*x = a, Sinfy=p and Sin"'z =y. Then

sina=x,sinB=yandsiny=zanda + B +y =1 (given)
Now a+B =m—-Yy

O cox+B F cosf-y )0 as s €n Sr=- ops
O & @yt y*> xy- & 7

O \/i xz\/i y= Xyt 7

(D)

(2



On sguaring both sideswe get
(1— xz) (1— y2) =x*y* +1 -7 —2xy\/1—7z2
O % x2 yv% xX*y:E X*y* b 7~ 2xy\/ﬁ
O 2xyJt z&5 x* y*> 72
Again onsquaring both sides, we get
42 y? (1— 22) = (x2 +y? —22)2
O 4xPy®: 4x*y*7?
O x¥% v% z% 4xPy?7%= 2% y% 2y? 7% 2x° 7%,

15. Problem: If Cos?®P + Cos‘lg = a , then prove that

a
2 2
p—z—@.cosa +q—2 =sn’a.
a ab b
Solution: Let Cos*P =A and cos'd =B,
a
Then cosA = = cosB=J and A +B = a (given)

b

) = cosA cosB - sinA sinB

_p E_\/ P J s
a’'b a® b?

2 2
0 \/1 pz_\/,_r - P o
a ab

Now, cosa = cos (A + B

On sguaring both sides, we get
| 200 O 0
- pzmml——aqz :D_pq —Cos o[
O oo b'o Dab 0

= 4 +y4 + 7 +2X2y2 _2y222 —2y2 72

Mathematics- 1A
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16. Problem: Solve arc sin Es—ﬁ + arc sinE = g (x>0).
X

X
Solution: Giventhat Sin‘1§ + Sin'lg = and x>0
X X 2
0 snt> T ogntl: costld gnt [t —124
X 2 X X X
s [, ®
X X

On sguaring both sideswe get

25 _, 144

=1
X2 NG

O x= 1690 =x 13 = x 13 (since x > 0).

3X -1 4X

17. Problem: SolveSm'lg + Sin = Sintx.

Solution: Sin_13—5X + Sin_1ﬁ =

O % 0 or 25=3,/25-16x%% +44/25 —9x°
xz20 0 4J25 9x& 25 3,25 16xX°.

On sguaring both sides, we get
16 (25 - 9x2) = 625 —150 /25 —16x2 +9 (25 —16x2)

0 408 144x= 625 150./25 16x% 225~ 144%°

0 150425 16x= 450
O 25 16x= 8 25 16¥ 9

O 16x= 16 =x 1.
Thus, weget x = -1, 0, 1. Wecan verify that all thesevaluesof x satisfy the given equation.
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18. Problem: Solve Sin™*x + Sin™'2x = g

Solution: Giventhat Sin"tx + Sin™'2x =

0 cos(Sin‘lx Sin‘12x)= cosg

O (& X\t 4x% x2x%

Oy @t 4xE 253

On sguaring both sides, we get
(1) (- a¢) = o +§§2

0 % 5x% 4x* =4x* +2x2+%

Nl N

X = X —_—
28 27"

3
But X =_ﬁ does not satisfy thegiven equationsince Sin™tx and Sin"?2x bothare
negativeinthiscase.

D?xégmzﬁ— V3

NE

O Onlysolutionis X = —=

2J7
19. Problem: If sin %Cos‘l {cot (2Tan'1x}5 =0, find x.
Solution: sin %Cos‘l {cot (2Tan'1 x}g =0
- 2Cos'1{cot(2Tan‘1x} =0 or Tt or 27

(Since therangeof Cos™ is[0, )
- Cos'l{cot(ZTan‘lx} =0 or g or T
- cot(2 Tan'lx) =1or0or -1

e 2Tanix=2+ 2" o =7 o 13_11
4 2 4
o Tanlx=+ Dorx Mo 4 30
8 4 8

= x:i(x/i—l) or +1 or * (\/§+1),
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. -1 g 1. \0 =
20. Problem: Provethat cos El'an {sm(Cot X}D

Solution: Let Cot™lx =9

x> +1
X2 +2°

. Then cotd =x and 0<0 < T1I.

1 1

Now Tan™* (sin (Cot'lx))

Then tan a =

1
J1+ X2

cos El'an'l {sin

|. 1. Evaluatethefollowing.
(i) Sin™* E—%
(iii) Sec'l(— JE)

O _1D 101
(V) Sm 9_2
>

(vii) Cos™® %os 54 0

2. Find thevaluesof

(i) sin a::os'ls%

i J1+ cot?0

(Cot -1 x} 5 =

_\/1+x2

O

TanlDiﬂ-a(gay)

B/1+x H

and0<o(<E
2

1 1
cosda = =
a1+ tan’a
_ 1 1+
=___ - = /_2
f1+ 1 i 2+ X .
1+ X
Exercise 8(a)

. 4010
(i) Cos %H
(iv) cot™(-+3)

(vi) Sin™? %&n Osml

JeH

650

(ii) tan Ecosec'lag

(since 0<0 <)
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(i) sin%sm‘lga (iv) sin™ Esm‘o’?”lD

3. Simplify each of thefollowing.
40 snx O

(i) Tan A+ ool (i) Tan™*(secx+tanx)

_1 [1—cosx
1+ cosx

(iii) Tan
(iv) Sin"}(2cos?0 -1) + Cos™(1-2sin? 6)
(v) tan_1§<+ 1+x25; x OR

[I.1. Provethat

18 _cpst 30

17 85

112 et 38
13 65

LD _

() sin™ 2 +Sin

(i) Sin™* 2 + Cos
S
O -1
(iii) tanCot "9 + Cosec
g

(iv) Cos™ g rsint S a2l

2. Find thevaluesof

o 13 1120 . .13 4 5 0
1) sin fCos "= + Cos ™ — i) tan n —+Cos —
® Ep 5 13H " %‘ 5 Neria
.13 450
iii) cos FBin" "= + Sin

(i) % 5 13H
3. Provethat

(i) cos%Tan —sn"HZTan %

L, 05 -1

(ii) tan [RTan 2
g H 2 %

20 _ 3

a1 420 _3
(|||)cos§25ran Zr+Tan % =
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4. Provethat
(i) Tan™* =+ Tan™ L _tat2-0
13 9
(i) Tan™ R T DI
2 5 8 4
(i) Tan I D L. ALL
4 5 19 4
(iv) Tan™t 1Lttt ooty cotas
7 8 43

5. (i) Show that sec?(Tan™2) + cosec® (Cot™*2) =10.

(if) Findthevalueof tan ﬁ:os‘lg ¥ Tan'lgﬁ.

(iii) If Sin"x — Cos™x = ’—g, thenfind x.

[11. 1. Provethat

(i) ZSin‘1§ ~Cost > Cos‘lﬁ
5 13 325
(ii) snt?soTanti=T
3 2
(i) aTan? 2 + Tan™ = —Tan? = =T
5 99 70 4
2. O)If a=Tan™ EL/1+X ~V1-xD [, then provethat X* = sin 2a.
@/1+x +y1-X g
; L B+ %2 -1
(ii) Provethat tan %Tan 1[1#% =

= o x 1[B
- X

2x +Cos‘1El =1
1-x° aH-—XZ% '

. ar 1, 0all u 1  _[fga 2b
Provethat tan 3—+—cos +tam — —=cos ==
(v) Proverhat tan -+ 5 o8 A+ 1ail 7 5% B

0
(iii) Provethat sin [Cot™
0

3. (i) If Costp+ Cos'q+ Cos™r =Tt then provethat p> + ¢ + r> + 2pgr = 1.



02p O \dl-g?0 402
(i) If Sin™* O— 0~ Cos™ O——>0=Tan thenprovethat
L+ p*[ oL+ H-X ]
_P~q
1+pg

(i) If a, b, caredistinct non-zero real numbershaving the samesign. provethat

1 0ab+10 _Obc+1 ﬁwﬂ _
Cot HEEJ“CN lﬁbTE + Cot —F =TOor 21

(iv) If Sintx+ Sinly+ Sin"tz=T11, then provethat

x1- X2 +y\/1—y2 +21-7° =2xyz.

(v) (a) If Tan‘1x+Tan‘y+Tan‘1z:Tr,then provethat x+ y+ z=xyz

(b) If Tantx+ Tanly + Tan‘lz— 5
4. Solvethefollowing equationsfor x:

O x+1 L

. _1|:|X_1|:| —
(i) Tan Evps + Tan IE_EX+ =
. L4010 0 10 -~ &o;m
(i) Ten g+ Tn g =Tan 5

0 2x D L 01— %20 0 2x0
- +
(iii) 3Sin " 4Cos 2 2Tan lm_x

(iv) Sin"t(1-x) - 2Sin~x :g
5. Solvethefollowing equations.

_1[IL+XD 1

(1) Cot =3 Cot'%—)% , Xx>0and x #£1

(i) Tanﬁ:os‘liﬁ = SirﬁCot*%; X #0

(i) Cos™x + Sin 12

CDI:I

(iv) Cos™ (\/§x) + Cos ix = g

(v) Sin %&n'1%+00§1x§ =1

then provethat xy + yz+ zx=1.

L
3
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If sne=xand 005 2, 75 then Sinix=6.
H 2 2H

If cos@=x and 6 O[0,77], then Cos™ x=6.
If tan@=x and 0 O¢ g g), then Tan™ x=6.
If cot®=x and 6 (0,7), then Cot™ x=6.

If sce® =x and eD[o,g)] (g,n], then Sce x = 6.
If cosecO®=x and 6 OF %,O)EI (O,g], then Cosce™ x = 6.
_ 1
If xOF L1 {0}, then Sin x= Cosec? (;).
1
If xOf 1,1 {0}, then Cos?x= Sec™ (;).
. 1
(i) If x>0, then Tan’x= Cot™ (;) and
. 1
(i) If x<O0,then Tan: x= Cot™ (;) -,

If 60 F gg] then Sin(sin @) = Band if xO [-11], then
sn(Sintx) = x.

If 60 [0,77], thenCos?(cosB) =0andif xO [-1,1], then
cos (Cos? x) = x.

0 m nd
If 60 —,—r3 then Tan™(tan 6) = 6and, for any xU R,
B 220 (tan®) Y

tan (Tan™ x) = x.
If 6 0(0,m), then Cot™(cot 8) = Band, for any xO R, cot (Cot™ x) = x.
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If 6 0[0, g)m (grr], then Sec? (secB) = 0andif xO¢ o - 10 BB ), then

sec ( Secix) =x

If 60F g,O)D (o,g],thmmsec-l(cosece) =0andif xOf o - 10 & ), then
cosec ( Cosec?x) =x.

If xO [-11], then Sin? (-x) = -Sin™*(X).

If xO [-1,1], then Cos™ (-x) = m —Cos™*(X).

Forany xO R, Tan? (- x) = - Tan*(x).

Forany X0 R, Cot*(-x) = m —Cot™x.

If xOfeo + 10 & ),thenSec™ (-x) =m —Sec™x .

If xOfeo + 20 [& ), then Cosec™ (—x) = — Cosec™ X .

If 900 [0,77], then Sin* ( cos6) :g 9.

|

If o0 [-

NS
N |

1, thenCOS‘l(sine):g -0.

If 900 (0, 7) , then Tan (cot 8) :g -9,

0 m g _ m
If 60/ —, , then ! == -0.
E > EH Cot™ (tan0) 5 0

L

If 90F g,O)D (O,%],thenSeC‘l(cosece):z

T T -1 _E_
110010, 20 (7., then Cosec(sece) = = 0.

(i) If 0< x<1, then Sin™ x = Cos™ (y/1- %) -

(ii) If -1 < x<0, then Sin™* x = —Cos™ (y1- x?) .
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0, O
(i) If ~1<x<1 Sin"x=Tan" .
1-x
0 0
(i) If 0<x<1, then Cos™x = Sin™ ( 1- x) Tan™ @iﬁ

(i) If -1< x< 0, then

0 4, O 0 4
If x>0,then Tan™x =Sin™ =Cos™* ] .
ﬁ}1+ xzﬁ @1/1+ xzi

0]

(if)

O O
Cos'x=m-Sin™* (Jl—xz) m+Tan™ ﬁliﬁ

O

If —-1<x<1 thenSin'lx+Cos'1x:g .

Forany xOR, Tanx Cot™x= g

If xOF o + 10 g ), then Sec™ x + Cosec™

NI:!

If x,yO[0,1] and x> + y* < 1, then

Sinx+Sin™y =Sin (xy1 - y* +yy1-x’).

If x, yO[O0, 1] and x* + y* >1, then

Sin"x + Siny = —Sin‘l(x\/l—y2 +y 1—x2).

If x, yaI[0,1],then Sin™x + Siny = 003-1( M. v _Xy)_

If x,yo [0, 1], Sin™x - Sin™y = Sin'l(x\/l—y2 — yJ1-X )

If 0<sy<x<1, then

Sinx - Sinty = Cos‘l(wll—x2 J1-y? + xy)
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< () If x,yO[o,1], then

Cos *x + Cos'y = Cos™ (xy —J1-x% |1 —yz).

() Ifx,yo[0,1]and x>+ y* =1, then

Cos'x + Cos'y = Sin‘l(y\/l—x2 + x\/l -y? )
< () If 0sx<y<] then
Cos'x - Cos'y = Cos‘l(xy +J1-x° .\1-y° )
(i) If x,yo[0,1],then
Cos™'x — Cos™'y = Sin'l(ywll—x2 - xJ1-y? )

« () Ifx>0, y>0,then

L Ox+y0

an 0 if xy<1
E‘XYD

DQ'D

DIIDI:II:IQDD
T

(i) Ifx<0, y<o0,then

O O O
an™ Xty 0

0 i‘XyD

Tan'x + Tan™y = %‘ﬂJrTan_l%E if xy <1

if xy>1

0 - if xy=1
L Ux=-yd

3
+XyQ
< If X, y, z havethesamesignand xy + yz+ zx < 1, then

“ If x.y>0 then Tan™x - Tan™y =Tan

_1Ex+y+z—xyzEI

Tan™x+Tany + Tan™z =Tan 0.
Ol-Xxy —yz - X
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Historical Note

3 5
The power seriesof Tan™x = x — % +X€ —... for | x| <1 isgeneraly known as Gregory

(1667 AD) series, named after James Gregory of Scotland. Madhava'sruleleadsusto the series

tan®0 N tan’ 0

0 = tan® — ... whichisthesameas Gregory series.

Madhava of Sangama-grama (1350 - 1425 A.D.) wasamathematician - astronomer of India(Kerala).
Hewasthefirst to have devel oped infinite series, and approximationsfor arange of trigonometric
functions. His discoveriesopened the doorsto the present mathematical analysis. Hiscontributionsto
infinite series, cal culus, trigonometry, geometry and algebraare noteworthy.

Answers
Exercise 8(a)
: n T . 3n
1. (i) ~3 (”)Z (i) a7
) T
(iv) 5 v)1 Vi) &
.3
(vii) o
4 . 63 24
2. () 5 (”)E (|||)2—5
AL 51t
(iv) = Uhrs
3. (i)g (i) g+§ (iii)l)z<|

(iv) 12[ (V) ﬁg +%tan'1>8




1. 2. () %

17
5. (i) ry
1. 4. (i) iJ:LE

1
5. () 5

(i) i (iii)zz
(i) x = \/j

-2 1
(i) 3, 3 (i) ﬁ (iv)0
.3 1
(i) E (@i 1 (iv) 2

0=
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Chapter9

“Weierstrass was the mathematical conscience par
excellence and he became known asthe father of modern
analyss’

- Howard Eves

I ntroduction

If wetake x=acos® and y=asin6 (6 OR), then
x? + y? = a%. Inother words, for any real value of 8, the
point (a cos 6, asin 0) liesontheCircle x* + y? = a?.

For thisreason, thetrigonometric functionswehave considered
inchapters6, 7 and 8 area so known ascircular functions.

' + 90 e_e—eD
If wetake X = a%b;emand y=bg——in, (GDR)
O 2 0O O 2 O

Y .
then we get that 2 17 =1. Thisis the equation of a

‘hyperbola’ (Hyperbolaswill bediscussedinthe second year
intermediatecourse). Thismeansthat, pointsonthehyperbola

2 2

X_z - y_z =1 areintheform
b
U 0 +e'0 O -0
%g 0, bo Dﬁ' (6 OR).
0O 2 00O 2 0

Weier strass
(1815 - 1897)

Karl Welerstrass was a German
mathematician who is often cited
as the “father of modern
analysis”. He was a great
teacher. He brought rigour into
mathematics. Weierstrassian
rigour became synonymous with
extremely careful reasoning.
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Keeping thisfactinview, the Hyperbolic functions areintroduced. The number e is

defined as
e:1+1 +i +i .. 00 :z i
11 2! 3! e n!
Forany xOR, itisknown that
2 3 0 n
eX:1+—+X—+X—+..oo:zX_
1 2! 3! e, n!

Thenumber e isalsogivenby e= lim L+ lﬁ(. You will learnthe proofsof theseresultsin
X

X — 0

higher classesand you will alsolearnthat e isanirrational number with 2 < e < 3. Theapproximate
valueof e isgiven by
e = 2.718281 ...

9.1 Definitionsof Hyperbalic functions, graphs

We beginwith theformal definitionsof hyperbolic functions.

9.1.1(a) Definition
1. Thefunction f : R —» R defined by

f(x):e _Ze_ , for all xOR

iscalled the ‘hyperbolicsine function. It isdenoted by sinh x. Thus

X —g X
sinh x = for all xOR
9.1.1(b) Definition
Thefunction f : R - R defined by
X —X
f(x):e +28 , for all xOR
is called the “hyperbolic cosine’ function. Thisis denoted by cosh X, so that

X

e

—X

+e

cosh x = for all xOR
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Now we define the other hyperbolic functions like in circular trigonometric functions.

O ey = 2K _ B TE  for all xOR.

cosh x e +e”

coshx e +¢e*

4. coth x = = , for all xOR
snhx € —-¢e* \{q
5. sechx = L =X2_X,forall xOR
coshx e +¢e
1 2
6. cosech X = — =——— for all xOR~{d
snhx € -e¢e

The six functions defined above are called “hyperbolic functions’.
9.1.2 Note

From the above definition, we observethefollowing
-0 0 _ 0
*€ -1 and sinho=E ze =0.

eO

1. coshO =

e’ +e
2

=cosh X.

2. For any xOR, cosh (-x) =

Hence thefunction f (x) = cosh x (x OR) isan even function.

) -X _ AX X _ a*[] ]
3. For any xOR, smh(—x):e © :—Eb © ] = —sinh Xx.
2 O 2 0O

Hencethefunction f (x) = sinhx (x O R) isan odd function.

4. From (2) and (3) abovewegetthat tanhx, coth x, cosech x are odd functionsand sech xisan even
function.

Wehaveprovedin earlier chaptersthefollowingidentitiesregarding circular trigonometric functions.

cos’ x +sin’x =1, foral xOR

ana
[

) m
sec? x—tan’x =1 foral x OR \E(2n+1)5

and cosec®x - cot’x =1, for al x OR «~ {nm|n0Z} .
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Now we provethefollowing identitiesfor hyperbolic functions.
9.1.3 ldentities

1. cosh?x —sinh? x =1, for dl xOR.

2. 1-tanh®x =sech’® x, for al xOR.

3. coth®x —1=cosech®x, for al x OR \ {G .

« = (ex + e—X)2 _ (ex _ e—X)Z
4

{(eZX +e 2 4+ 2) _(e2x + @2 _2}

Proof: 1. cosh?x — sinh?

INEEE LS

4=1,

2. From (1) above, cosh’ x — sinh® x =1. Ondividingbothsidesby cosh? x,
we get
1 - tanh® x = sech® x.

3. Againfrom (1), wehave cosh®x — sinh® x =1.

Since X # 0, sinh®x # 0. So, on dividing the above equation both sidesby sinh®x, we
get coth® x — 1 = cosech? x.

9.1.4 Graphs of hyperbolic functions
(i) Thegraphof y=sinhx

Y
Let y =sinhx. 41
e -e* _ 10 -10 5 ]
Then y = == O0—0.
2 20 €€
Todraw thegraph of y =sinh x, . — . . X
-6 -4 -2 0 2 4 6

thefollowing observationsare useful.
For x>0,€” >1 andhence y>0. 27

For x=0,e” =1 andhence y = 0.

For x<0,e” <1 andhence y<0.
Fig. 9.1 Graph of y =sinhx
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1 .
Alsoas X —» o,e" - o and — - 0. So sinhx - oo
e

1 .
and as x » -, e -~ 0and — - ®. So sinhx - —o,
e

Further y isincreasingwith x andiscontinuouson R. Thusthegraphof y=snhxisasshownin
Fig.9.1.

(i) Thegraphof y=coshx

2
: e+ (ex‘ex)
Let y=cosh x. Thatis y = = = +1.

Thus y>1 fordl xOR. Also as X - o, Y
weget asabovethat y — o . Further y isdecreasing
on (~e, 0], increasingon [0, «) and y iscontinuous
on R. Since the function y =cosh x isan even 1
function, itsgraphissymmetric about y-axis. Keeping

these pointsinview wecandraw thegraphof y = cosh x

asshowninFig.9.2.

(i) Thegraph of y= tanhx Fig. 9.2 Graph of y = cosh x

g-e* e -1

2X +1

—— = . Observethe
g€+e’ e

Let y =tanhx =

following
At x=0,tanhx =0; For x>0, tanhx >0 and

for x<0, tanhx <0.

1- 1
? ; 2X
AsS X - o, y= 1 _>1(smcee AOO)
1+ o
eX
2X _
As x_.—oo,y:(ez)(—l_»—l(since e?* qo)
e’ +1
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Further, y isincreasingand continuouson R. Now Y
________________ dlhagne s eingate s S e
we can draw the graph of y = tanh x as shown in
Fig.9.3.
X
(iv) Thegraphof y = cothx ] 0 1
Let y = coth x
e +e”
:m (fOI‘ X¢O)_ ““““““““ o
eZX +1

Then y = . Observe that
y e -1

S X o> o0y slandasx - —w, vy —1.

Alsoif x>0, then y>0 and

y > o a x » 0+(i.e, x>0).

If x<0,then y<0 and S S R — NN S
-2 -1 0 1 2 X
y > —©asx - 0- (.e, x<0).
Further, y isdecreasing and continuouson R. B Ul
Now wedraw thegraphof y = coth x asshown 5]
inFig.9.4.
As above, we can also draw the graphs of Fig. 9.4 Graph of y = cothx

y = sech x and y = cosech x asshownbelow.

Fig. 9.5 Graph of y = sech x Fig. 9.6 Graph of y = cosech x
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9.1.5 Domain and Range of hyperbolic functions

From the observations we have madein 9.1.4 and from the graphs, we observe that the domainsand
ranges of the hyperbolic functionsareasgiveninthefollowing table.

Table9.1
[ S.no. Functiony=f (x) Domain (x) Range(y)

(0] y = snhx R R

(i) y = cosh X R [1, )

(iii) y = tanh X R (-1, 21

(iv) y = coth x R\ {G (—o0,-1) O (1, )
V) y = sech x R (O, 1]

(Vi) y = cosech X R\ {9 R~ {G

9.2 Definition of I nversehyperbolicfunctionsand graphs

In this section we define the inverses of hyperbolic functions by taking the domain suitably in
such away that the functions become bijections.

9.2.1 Definition

1. Thefunction f : R — R defined by f (x)=sinhx for all xOR, isabijection. Thusthe

inverse of this function exists and it is denoted by sinh™. Thus, if X, y arereal numbersthen
snh™x=y o sinhy=x.
2. The function f : [0,) - [L o) defined by f(x)=coshx, for all xO[0w ), is a
bijection. We define cosh™ : 1, «0) — [0, «) by
cosh™x=y « coshy=x forall xO[1e ).
3. Thefunction f : R - (-1,1) definedby f(x)=tanhx, forall xOR, is abijection. We
define tanh™: (-1 1) - R hy

tanh™x=y < tanhy=x foralxO¢ 11).
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Smilarly,
4. coth: RN[-1,1] -~ R~{0} isdefined by

coth™x=y o cothy=x foralxOR~\[-1 1].
5. sech™:(0,1] - [0, ») isdefined by
sech®x=y o sechy=x forall x0(0,1].
6. cosech™: R\ {0} -~ R~ {0} isdefined by
cosech®x=y « cosechy=x forall x O R~\{0}.

9.2.2 Domain and Range of inver se hyperbolic functions
Thedomainsand ranges of the six inverse hyperbolic functionsdefined abovearegiveninthefollowing

table.
[ Sno. Inverse hyperbolic Domain (x) Range(y)
functiony =1 (x)

@) y = sinh™ x R R
(i) y = cosh™ x [1, ®) [0, =)
(iii) y = tanh™tx (-1, 1) R
(iv) y = coth™x R~ [-1, 1] R~ {0}
v) y = sech™ x 0. 1] [0, o)
(Vi) y = cosech™ x R\ {0} R\ {0}

9.2.3 Graphs of inverse hyperbolic functions
Thegraphsof thesix inverse hyperbolic functionsaregiven below.

Y
Y
5 2
11 1
2 1 o 1 Z X 2 -1 o 1 2 X
_1- _1
_2_ _2 | Tay

Fig. 9.7 Graph of y=snh™x Fig. 9.8 Graph of y = cosh™x
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| Yo 1Y
I | :
i i .
| | s
I 11 | :
| : :
I l :
| [ T >
T : : T _l 0 1: X
2 Ly 0 h 2 X 5
| I
| |
I -1 |
| |
I |
Fig. 9.9 Graph of y=tanh™x Fig. 9.10 Graph of y = coth™x
Y
Y4 5]
1_
0 A
1 X
s > -1 0 1 2 X
//
//
/7’ -1
f
i
Fig. 9.11 Graph of y = sech™x Fig. 9.12 Graph of y = cosech™x

9.3 Addition formulasof Hyperbolicfunctions

In the following we give formulae to evaluate sinh (x + y), cosh (x £ y), tanh(x £ y),
sinh 2x, cosh 2x and tanh 2x asintrigonometric functions.
9.3.1 Theorem: For x, y OR
() sinh(x+y)=sinhx coshy +coshx sinhy
(i) sinh(x-y)=snhxcoshy —coshx sinhy
(i) cosh(x+y)=coshx coshy +sinhx sinhy
(x - y) =coshx coshy -sinhx sinhy
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Proof: () sinhx coshy + coshx sinhy

e —e X[y +e 0O +efl & —e
K, 1] 1 +0 £ |
O 2 m 2 0 0 2 m 2 0

{ex+y Fe8 Y e Xty XY 4@ty XY yeX Y _gX —y}

N

2(e*"Y — > (x+y) _ ar(x+y)

[Dsinh(xr yF sinh x.coshy+ coshx.sinhy]

Since sinh(-y) = -sinhy and cosh(-y) =cosh(y) (seenote9.1.2),
onreplacing y by -y in (i) weget
(i)  sinh(x-y)=sinhx cosh(-y) +coshy sinh(-y). Therefore

{sinh(x—y) =sgnhx .coshy - coshx.sinhy]

(i) coshx coshy + sinhxsinhy

[+ e*[Me¥ +eU O e -t ¢ —el
] 4] £ B
2 m 2 00 2m 20

{ex+y F Y 4o XY 45T @Y —eX W 4o —y}

Al -b||—‘|:||_—_|

gty 4 g )

2. (eX+y + e'x'y) 5

=cosh(x +Y). Therefore

[cosh(x+y) =coshx.coshy +sinhx . sinhy]

Onreplacing y by -y in (iii) above, weget
(iv) cosh(x —y) = coshx.cosh(-y) +sinhx.sinh(-y). Therefore

{cosh(x ~y) =coshx.coshy —sinhx.sinhy.]

9.3.2Corollary: Forany xOR,

() sinh2x = 2sinhx coshx = ZtLh)z(
1-tanh® x
1+ tanh? X

(i) cosh2x=cosh®x +sinh®x =2cosh®x -1 =1 +2sinh®*x = 5
1 - tanh” x
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Pr oof
(i) Onreplacing y by x in 9.3.1(i), weget
sinh2x =sinhx.coshx + coshx sinhx =2 sinhx cosh x.

Now sinh2x = 2sinhx coshx = ZS'ShXCf)ShZX (- cosh® x —sinh® x =1).
cosh” x —sinh” x

On dividing the numerator and denominator in R.H.S. by cosh® x, weget

2tanh x
1 - tanh® x

(i) Onreplacing y by x in9.3.1(iii), weget

[sinth:

cosh2x = cosh x coshx + sinhx. sinhx = cosh® x +sinh® x e (1)

Since cosh? x — sinh? x =1, wereplace sinh?x in (1), by cosh?x —1 toget

{costh = 2 cosh? x —1]

Similarly, onreplacing cosh?x by 1+ sinh?x, weget

[costh =1+ 25inh2x]

2 : 2
Finally,cosh2x =cosh®x + sinh?x = cosl12x +s!nh2x- ( cosh’?x —sinh? x =1)
cosh” x —sinh®x

On dividing the numerator and denominator inR.H.S. by cosh?® x, weget

2
[COShZX:w]

1 - tanh? x

9.3.3 Theorem : Forany x, yOR,

tanh x + tanhy
1+ tanhx tanhy

() tanh(x+y)=

. tanhx — tanhy
tanh(x - y) =
() ( y) 1-tanhx tanhy
N cothx cothy +1 .
i) coth(x +vy)= , If X # =
(i) ( y) cothy + coth x y
(V) coth(x - y) = Sxcothy =1 5y oy

coth'y — coth x
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Proof : Firstweprove (i) and (iii). Onreplacing y by -y, (ii) followsfrom
() and (iv) followsfrom (iii).

sinh(x+y) _sinhxcoshy + coshxsinhy
cosh(x+y) coshxcoshy +sinhxsinhy

0 tanh(x +y) =

(by Theorem9.3.1)

Ondividing both numerator and denominator inR.H.S. by
cosh x coshy, weget

[tanh(x+ y) = tanh x + tanh y ]

1+ tanhx tanhy

cosh (X +y) _coshx coshy + sinhxsinhy
sinh (x +y) sinhxcoshy +coshxsinhy -

(i) coth(x+y)=

Ondividing both numerator and denominator by sinhx sinhy, weget

cothx cothy +1
coth (x +) = coth y +coth x

Onreplacing y by x in(i) and (iii) of theorem 9.3.3, weget thefollowing:

9.34 Corollary: Forany xOR,

coth?x +1 .

2tanh x (i) coth2x = ——~ 27 x¢o.]

() tanh2x= —]

1+ tanh? x 2 coth x

9.3.5 Inverse hyperbolic functionsin terms of logarithmic functions

Theinverseof thefunction f (x) = €* (xOR) isgivenby f*(x) = log, x(x >0). Since

hyperbolic functions are defined intermsof e*, we naturally expect formualefor inverse hyperbolic

functionsintermsof log, x. Now wederivetheminthefollowing

9.3.6 Theorem: Forany xOR,

sinh™x = log, (x + /X +1).

Proof: Let xOR and y =sinh™x. Then
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e -e¥ e&¥-1
2 2e’

0 et e (2x} £ 0.
Thisisaquadraticequationin e’. Sothat

oy = ZXEVAX +4 V;lx2+4 = X #£4/X° +1.
Since >0 fordl ydJR and x<\/x27+1, weget @ =x + 4/x° +1.
Thus y = Ioge(x +\/x27+1)
Hence [ sinh ™*x :Ioge(x +\/x"’7+1) ]

9.3.7 Theorem: Forany x [ [l,oo ), cosh™x = Ioge(x NS —1).

Proof : Let xO[lp ) and y = cosh™ x. Then

Thisisaquadraticequationin e¥. Therefore

2X * \|4x% - 4
o ==X 2X =X+ X% —-1.

1

—— K <1, since x>1.
X+ X% =1

Further, &’ >1 since y=>0.

But X —/x* -1=

Therefore, e = x +4/x*> —1. Thatis y =log, (x + (X —1).

Hence, [cosh‘lx = Iogeﬁx +4x -1 ﬁ ]
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9.38 Theorem: For xOf 1, 1), tanh(x) :%mgeﬂ* X0
Proof: Let xO€ 1,1) and y=tanh™x. Then
2
Cany <€ (@) -1
Ty s ey T (&) +1 - (@)

xgey)z +1H=(ey)2 “10% £ (@) (& %)

1+ +x 0 1+ xO
0 %9 2y o notethat >0
T s

Now from (1),

for xOf 112))
0y } log M+ x 0O
> ey H

Hence [tanh‘1 x=1 log, %ﬂg foral xOf 1, 1)]
2 0l-x0g

Similarly wecan provethefollowing.

9.3.9 Note
1. For |X>1, coth™x :% log, Eﬂg
OxX—

10
1 - 20
2. For x0(0, 1], sech™x log, %ﬁ
— 2]
3. () For xOf{ew ,0), cosech™x= log, %H
X

vl
(i) For xO(0p ), cosech™>= log, %ﬁ

9.3.10 Solved Problems
1. Problem: Provethat for any x O R,

sinh(3x) = 3sinhx+ 4sinh®x.

Solution: sinh3x = sinh(2x +x)
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sinh2x . cosh x + cosh 2 x sinh x

2sinh x cosh x)cosh x + (1 +2 sinh? x) sinh x
( ) ( )

= 3sinhx +4 sinh®x.

2. Prablem: Provethat, for any x 0 R,

3
tanh3x = 3tanhx + tarzlh X
1+ 3tanh” x

tanh2x + tanh x
1+ tanh2x . tanhx

Solution : tanh3x = tanh (2x + X) =

Zsinhx(1+sinh2x) + (1 +2 sinh? x)sinhx(-: cosh? x —sinh? x =1)

2tanhx tanh x
1+ tanh? x _ 2tanhx + tanhx (1 + tanh? x)
— - 2
1+ 2tanh;< tanhx LT tanh? x + 2tanhx(tanhx)
1+ tanh” X

_ 3tanhx + tanh® x
1+ 3 tanh®x

3. Problem: If coshx:g, find thevaluesof (i) cosh(2x) and (ii) sinh(2x)

Solution :
(i) cosh(2x) = 2cosh® x -1 = 2_% -1 =§_

(i) Weknow that cosh®(2x) - sinh® (2x) =1

. 3rf
Therefore, sinh? (2x) = cosh? (2x) -1 = -1
erefore, sinh?(2x) = cosh® (2x) HEE

_ 23 -2 _(25)(21)

22 4

O sinh(2x¥ + 5\/22_1.

4. Problem: If cosh x = sec 0 then prove that tanh25 = taan-

2
coshx-1

Solution : tanh?> = £01X 7=
coshx+1



_ secO -1
secO+1

_1-cosO _
1+ cosO

tanzg_
2
O-mr nQ a . or [
5. Problem: If 6 O , — and x=1lo t +0rT7], then prove that
4 af bl e
(i) coshx =see20 and (ii) sinhx = —tan20.

- o . m, 0 grm
Solution: x =log B:ot —+600 e= cot—+ ﬁ and
*H" 4 °H Ha

e’ = M;D:tanﬁgwﬁ
cot +0
Ha " H
Now,
. e +e* 10 O O am O
I) coshx = = = [rot +0F +t — +
! 2 T2
_1m-tan0  1+tan60 _ 1 H1-tan6)” + (1 +tan0)
2%1+tan9 I-tanb 2°H 1 —tan®0 I_ID
1R+t  1+tan®0
~2d g—tanze)gzl—t 7y X020
E E an
N . ef-e* 10 o1 .0 O O
I sinhx = = — [rot + 0 — tan —"‘ﬁD
" 2 20 H4 T H Ha 0

_10-tan® 1 +tan6d _ 1 H1-tand)” - (1 +tan0)’H
5 - -

ZE;i+tan6 I-tanfg 277 1 —tan”@ B

_10-4tan0d _ U 2tan6U

= = = 2
2 %—tanzﬂg ] I —tanzﬁD tan 29,

Mathematics- 1A
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6. Problem: If sinhx = 5, showthat x =log, (5+\/2_6).

Solution:  sinh x =5
O x snh™ (5F Ioge(!-} 5% 1) (by Theorem 9.3.6)
= log, (5 + JZ_G)

7. Problem: Show that tanh™ %ﬁz % log, 3.

Solution: From Theorem 9.3.8,

tanh ™ x = log, 1+x

2 1-X

1

1+ =
-1 Dll:l—i 2 :l|0 3
Therefore, tanh BEH— 2Iogel_ 1 > Je 3.

2

Exercise 9(a)
. 3 . .
L If sinhx =7, find cosh (2x) and sinh (2x).

2. If sinhx =3, thenshowthat X = log, (3+\/E).

tanhx—tanhy

3. Provethat (i) tanh (x-vy)= L~ Xty

_ cothx.cothy -1
cothy —cothx

(i) coth (x = y)

4. Provethat (i) (coshx -sinhx)" =cosh(nx) —sinh(nx) , forany n OR.

(i) (coshx +sinhx)" =cosh(nx) +sinh(nx), forany n OR.

5. Provethat tanh x + tanh x = —-2cosech x , for x# 0.

sechx -1 sechx +1

6. Provethat cosh + sinh x = sinhx + coshx, for x #0.
1-tanhx 1 —coth x




370

7. Forany x e R, prove that cosh®x — sinh®x =cosh(2x).

0 .
8. If u =log, (tan(% + ED andif cos6 > 0, thenprovethat coshu =sec 0.

cosh x 1

1
if x#20;sechx =
cosh x
and cosechx =— if x#0.
sinh x

cosh?x —sinh?x = 1.

1 — tanh? x = sech? x.

coth? x — 1 = cosech? x.

sinh (x +y) = sinh x cosh y + cosh x sinh y .
sinh (x —y) = sinh x cosh y — cosh x sinh y.
cosh (x +y) = cosh x cosh y + sinh x sinh .
cosh (x —y) = cosh x cosh y — sinh x sinh y.

il () = tanh x + tanh y

1+ tanhx tanh y

tanh x — tanh y

tanh (x —y) = .
«=y) 1 — tanh x tanh y

Mathematics - IA
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: . 2tanh
o smh2x:25|nhxcoshx:L):_
1-tanh® x
+ 2
% cosh2x= coshix+ sinhix =2 costPx— 1= 1+2sinhex= —+ o X tanhle
1-tanh® x
h
< tanh2 x = ZtLZ(
1+ tanh® x

% snh3x=3sinhx+ 4snhdx.
cosh 3 x = 4 cosh?® x - 3 cosh x.

3tanh x + tanh®x

tanh 3 x =
X 1+ 3tann x

% sinh™x =log, (x + (X +1) forall xOR.

cosh™ x = log, (x + X —1) forall xO[1le ).

O O
coth™ x = %Ioge El,f(—j%forall xO€oo - )0 & ).

=l

mveln
X = log, %ﬁfmaﬂ X1 (0,1).

_ [+ 20
cosceh™x = log, %ﬁ if x<0 and

+ 1+ x20
= log, EL)(@ if x> 0.
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Historical Note

\Eersirass (1815 - 1897), wasavery influential teacher and his meticulously prepared lectures
established astandard for many future mathematicians. He has devised testsfor convergence of series
and contributed tothetheory of periodicfunctions, functionsof red variables, lipticfunctions, hyperbolic
functions, convergenceof infinite productsand the calculus of variations. Hea so advanced thetheory
of bilinear and quadratic forms. Heinitiated aremarkable programmeknown asthe* arithmetization of
andyss’, which stressed that al of mathematical analysiscan belogically derived from thepostulates of
thered number system.

Answers

Exercise 9(a)
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Puapenties of In

“ The mathematical sciencesexhibit particularly order,
symmetry and limitation and these are the greatest
forms of the beautiful”

— Aristotle

I ntroduction

Geometry is a branch of mathematics which
investigatesthe relations and properties of solids, surfaces
and angles. Trigonometry is based on the study of the
relations between the sidesand angles of atriangle. Many
problemswhose solutions can’t be found by the methods
of geometry arereadily solved with theaid of trigonometry.

Hipparchus (140 B.C), a Greek mathematician
established the rel ationship between the sides and angles of
any triangle. Thethreemost used ratiosto solvearight angled
triangle are the sine, the cosine and the tangent. Asthe
angle changesin magnitude (size), the aboveratios of an

anglechangeinnumerical value.

Ceva
(1647 - 1736)

Giovanni Ceva was an Italian
mathematician widely known
for proving a theorem known
after him as Ceva's theoremon
a property of a triangle.
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We have so far considered trigonometry as a subject useful to study the trigonometic functions
and their propertiesin amodern view point. But one of the main aims of learning trigonometry isto
determine therelation between the sidesand angles of agiventriangle. If thethree sidesare known,
then the three angles can be determined and thetriangleisfixed.

However, if thethree anglesare known, the sides cannot be fixed and thetriangleisnot determined.
The purpose of thischapter isto devel op the necessary rules and methodsfor determining therest of the
sidesand angles of atriangle, given one or two sidesand / or angles.

10.1 Relation between the sides and angles of a triangle

In triangle ABC, we denote the sides BC, CA and AB (aswell as their magnitudes) by the
symbolsa, b, crespectively and theanglesat theverticesi.e.,, |[CAB, |ABC, |BCA by thesymbol A, B,
C respectively. We also denoteitsareaby the symbol A and its perimeter with 2s, whichisequal to
atb+c

We know from elementary geometry that in any two triangles, if the corresponding angles are
equal, they aresimilar. Similarly intwo right angled triangles, if one of the acuteanglesin atriangleis
egual to an acute angle of the other, then thetwo trianglesaresimilar. From this, oncethe anglesof a
triangle are known, by just knowing oneside, it is possibleto determinethe triangle by computing the
rest of the sidesin termsof trigonometric functions. Further, if any two sides of aright angled triangle
areknown, itis possibleto determine the third side using the Pythagoras theorem and thereby fix the
triangle.

In general, to construct atriangle, we need either two anglesand aside or all thethreesides. If
two sidesand theincluded angle are given (for example a, b, 8) thethird side can be determined using
thecosinerule c® = a® + b? - 2ab cos8. If al thethree sidesof atriangle are known, then the cosine
rulescan still beused to fix theangles of thetriangle. If 6 isaright angle, thisrule coincideswith the
Pythogoras theorem. If one side and two angles are given, the sinerule (which isdiscussed in the
following section) can be used to solvethetriangle. Inusing the cosinerule, one hasto find the square
root and thisdifficulty can be overcome by using the appropriate tangent law.

10.2 Sine, Cosine and Tangent Rules- Projection Rules

The circle passing through the three vertices A, B, C of AABC is called the
circumcircle. Thecentreand radiusof thiscircleare called the circumcentreand circum radiusrespectively.
We know that the perpendicular bisectors of the sides of atriangle are concurrent and the point of their
concurrenceisthe circumcentre. We denotethe circum centre by Sand circumradiusby R.
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The equation form of the law of sinesis actually three equations, each of which isbased on the
proportionality of two sides of atriangle to the sines of the angles opposite to them. A study of these
equations showsthat thefollowing cases of triangles can be solved by meansof law of sines: (i) givenany two
anglesand any side, (i) giventwo sidesand angle oppositeto oneof them.

Thelaw of cosinesprovidesrelationswhich solvetriangles coming under the cases: (iii) giventwo
sdesandtheincludedangle, (iv) given3sides. Incase(iv) itispossibletofind anyoneof the3anglesusing
b? + 2 - g2

2 bc '

In atriangle ABC, asusual, we denote (the magnitudes of) the sdes AB, BC, CA by c,a, b

respectively andtheangles |BAC, |CBA, |[ACB by smply A, B, C or |A,|B, |C respectively.

CoOs A =

A
10.2.1 Theorem: In AABC, —&— = 2 =€ _oR,
sin A snB snC D
where Risthe circumradius. R ¢
Case(i): |A isacute(seeFig. 10.1). B 5
Sisthecentreof thecircumcircleand 3
CD isitsdiameter.
B a C
ThenCS=SD=Rand CD =2R. JoinBD.
Fig. 10.1

m
Then |[IDBC = > and ADBCisaright angled triangle.

Then |BAC = |BDC, (-- anglesinthe same segment) A
0 snA = sin|BAC=sin[BDC = 2C = & |
cD 2R
0-2- 2R
SnA

Case(ii): |A isarightangle(seeFig. 10.2).
ThenBC=a=2R=2R.1=2Rsin90°

O& 2RsnA. Hence —— = 2R.
sn A

Fig. 10.2
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Case(iii) : |A isobtuse (seeFig. 10.3).

A
DBC isrightangle. (- angleinthesemi circle)
Inthecyclic quadrilateral BACD, c . b
BDC =180° - [BAC =180° - A v - -
IN ABDC, sinA = sin(180° - A)
. BC _ a
=sn|BDC= — =—.
CD 2R
Hence_i =2R.
SinA D
Inasimilar way, we can prove
b _ c _ _
snB 2R, R =2R Fig. 10.3
S .b‘ = 2R,
snA sinB sinC
10.2.2 Note

(i) Theorem (10.2.1) is called the ‘sine rule’ or ‘law of sines’. Also in aright angled triangle,
Hypotenuse = 2 (circumradius) = circum diameter.
(i) a=2RsnA,b=2RsinB,c=2RsnC.
(or) sin A :i,sinB :i,sin c="2.
2R 2R 2R
We shall now derive the cosine rule connecting the sides a, b, ¢ of AABC with the cosinesof its

anglesA, B, C.

10.2.3 Theorem: In AABC, b?=c® +a* -2 cacosB
c?=a’ +b*> —2abcosC
a’=b*> +c¢* - 2bc cosA
Proof: @ = (2RSnA)?
= 4R2[sin (B + C)]?
= 4R%(sinB cos C + cos B sin C)?
= 4R sSin’B(1-sin?C) +sn°C(1-sin?B) + 2sinB sin C cosB cos C}
= 4R siB+sn’C+2sinBsinC(cosB cosC—sinB sinC)}
= 4R¥sin’B +sn’C+2snB sinCcos(B + C)}
= b?+ ¢ - 2bc cosA.
Theproofsof the other tworesultsaresimilar.
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Alter nativemethod LY
Takethevertex B of AABC asoriginand
itssdeBCaong X-axisasshowninFig. 10.4.
ThenB =(0,0) and C=(a, 0).

Anglemadeby theside AB with X-axis=B A(ccosB, csinB)
Here AB =c and A =(ccosB, csinB) c b
2 _ 2 _ _ 2 . _ 2 —
b* = CA? = (ccosB -a)” +(csinB -0) B(0.0) ” e
- c’cos’B + a®> —2ca cosB + ¢® sin’B Fig. 10.4

c? (cos2 B + sin® B) + a® —2cacosB
ObE c* a* 2cacosB.
Similarly we can provethat ¢ = a®> + b* — 2ab cosC and a® = b® + ¢ - 2bc cosA .

10.2.4 Note

(i) Theorem(10.2.3) isknownasthe'law of cosines andtherulesinitarecalled’ cosnerules'.
b? + ¢® - a° c® +a - b?

(i) Fromthecosinerules, wecanwrite|C0OSA = —— | (cosB = ———

2bc 2ca
az + bz _ Cz
andlcosC= ———
2ab

Theserulesareused to find thethree angles of atrianglewhenitssidesaregiven.

10.2.5Theorem: In AABC, a=bcos C + ¢ cos B.
Proof: Fromthecosnerules, wehave
2 4492 —p? 2 12 —c2
CosB:u'COSc:u
2ca 2ab

2 4 p? -c2[] 0c2 +a2 —bd]

O bcos G ccosB:bMﬁ Cmug

0 2ab 0 N 2ca [

_a?+b? -c?+c? +a? -b? _ 2a°
2a 2a

Similarly, we can provethat b= ccosA +acosC and c=acosB + b cosA

=a.

Note: Thesethreerulesarecalledthe‘projectionrules’.

10.2.6 Theorem: In AABC, tan 2 _CH=-P ¢ A
B 2 E b+c 2

Proof : Fromthesinerule, b=2RsinB, c=2RsinC.
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_2R(sinB -sinC) _sinB -sinC
2R(sinB +sinC) sinB +sinC
DB +C[j 0B -

WB N
DB +CD %ﬂ

B +CO

o ! H—H

A 0B -CO U 0B+Q] _ AD
= tan — tan H—H H COtH—za = tan 2H

B-CO b- € oo A

Hence

+
(e RNe]

Inasimilar way, we can provethat tanéC AD_c- 2ot B

i cra 2

A-BO_a-b _C

and tan cot —.
H2 H a+b 2
Note: Thesethreeresultsarecalled *Napier analogy’ or ‘tangent rules'.

10.3 Half angleformulaeand area of atriangle

Wehavelearnt in elementary geometry that, if thebase b andthedtitude h aregiven, theareaof the

triangle, denoted by A isequal to % bh. However, if the three sides a, b and c are given, then

c
. Inthissection A isobtained intermsof two of its

A =\/s(s—a) (s-b)(s —c)WhereS=a+2+

sdesand thesineof theanglebetween them. Wea so obtain somerelationsinvolving half angles, theperim-
eter and thesidesof thetriangle.

10.3.1 Theorem : In AABC

(s=b)(s-¢) N A _ [s(s-a)
(i) sn 2 > \/ be (i) C0S = =\ "o and
A _ [(s=b)(s-¢)
(iii) tan > = —s(s—a) .
Proof: (i) Wehave 1-cos A =2sin’ '2 .. (D
b? +¢* -a’

Bycosnerule,1 - cos A =1 -
2bc
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2bc - b? - c? +a® az—(b—c)2
2bc 2bc
_(a+b-c)(a-b+c)
- 2bc
Since a+b+c=2s,a+b -c =2s -2c =2(s -c)

Similarly a-b +c¢ =2s -2b =2(s -b)

s een 22579 2s=b) 2(s-b)(s c)

2bc bc
O From (1), 25|nZA 2(s-b).(s-c)
2 bc
A (S_b)(s_c) O é<900 smé>0
O S|n—2- \/—bc ) B 5 H

(il) Wehave 1 + cos A —2co 2

2 2 a2 + 2 2
Bycosinerule1+(;osA:1+b tc —a :(b c) -a

2bc 2bc
_ (b+c+a)(b+c-a) 2s.2(s-a) _2s(s -a)
- 2bc 2bc bc
From (2), 2cos’ % (s ) O cos2 = 4)EI cos- s(s-2)

. A
Sin— _ _ -
(ii) tan % /i :\/(S bk))((:s C)/\/S(Sbc 2) , (fromresults (i) and (ii))

COS—
2

(s-b)(s-c)
- s(s-a) -
10.3.2 Note: Inasimilar way, we can prove that

sn B - \/(s—c)(s—a)’ sin%=\/(s_a)(s_b)

2 ab

(s-b) C s(s-c)
,/ cos — =
2 ab

(2
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%:J(s—c)(s—a) t 9:J<s—a)(s—b)_

an
s(s-b) 2 s(s-¢)
10.3.3 Deductions. Thefollowing deductions can be made from Theorem (10.3.1):

(i) sinA = Zsin%cos% = 2\/(S_b) (s-¢) \/5(5 - a)

bc bc
- 3\/5(5—a)(s—b)(s ~¢c).
(ii) smB——\/S s-a)(s-b)(s -c).

(ii)snC = E\/s(s ~a)(s -b)(s -c).

Wenow find theareaof the A ABC denoted by thesymbol A, intermsof two of itssidesand the
sineof theanlge between them.

10.3.4 Theorem: A =areaof AABC
=1bcsinA :lcasin B:EabsinC
2 2 2
Proof : In AABC, from A draw AD perpendicularto BC (Fig.10.5).

Then A = > (base) (height)

= -BC.AD==a.AD 7
In A ABD, smB—E

Hence AD = ABsnB =csin B /

N
I\Jll—‘

A =

a.(csinB¥ %casin B

N

Similarly, wecan provethat A = % absinCand A = % bc snA.
1 . 1 . 1 .
0A = Eabsnc,’: EbcsmA= EcasmB .. (D

Consequences. A = % absinC :% (2Rsin A) (2R sinB)sinC

-2R?snAsnBsnC - (2)
1. 1
A:EabsmC—Eab —\/SS‘ a)(s ~b)(s ~¢)

—\/s (s-a)(s-b)(s -c) ..(3)
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. O O
A:EabsmC:lab.i,D: _C =2R[
2 2 2R’ g sinC u
_ae
4R

Formulae (1) - (4) areuseful for finding theareaof atriangle.

10.3.5 Note

0] tan% can also be expressed as

o = Jw ‘1 J(s—bxs ) J(s ~b)(s )

s(s - a) s(s - a) (s -b)(s -c)
_ (s-b)(s-c) :(s—b)(s—c)
\/s(s -a)(s-b)(s-c) A

A
W COt—2= m

Similarly, we can deduce that

tanE:(s_c)(s_a),hence cotE= A )
2 A 2 (s-c)(s-a)
C _(s-a)(s-b) C_ A .
and tan2— A ,hencecotz—(s_a)(s_b)
(D) tan%canaisobee><preesedinar]dternateform
an A = (s-b)(s-c) 1= (s -b)(s -¢) 5 s(s -a)
2 s(s - a) s(s - a) s(s - a)
_\/s(s—a)(s—b)(s—c) A
- s(s - a) B s(s - a)
0 cot —A= S(S_ a)
2 A
Similarly, we can deducethat
tanE: A O cotP= S(S_b)
2 s(s-b) 2 A
tanE: A O cotgz S(S_C)
2 s(s-c) 2 A

(@)
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- B[
cosﬁi
10.3.6 Theorem: In A ABC, a+h = 2 H
C . C
smE

Proof: Fromsnerule,wehavea =2R sin A, b=2R sin B, c =2R sin C.

a+b _ 2R(snA+snB) _ snA +sinB

Hence - -
C 2R sin C sinC
OA + B[ DA— OA - BJ
sin —[]CoS
B 28, B3 1
C C C ,
2sin— cos — sm—cos—
2 2 2 2
O - O
O A+B+C=180, A+B _180"-C —90° - CD
0 2 2 20
cosDA - BO
2
. C
sin —
2
B - CO C—-AQd
cos 00557
. B cta 2
Similarly, we can provethat b + ¢ = 2 H; = H
a . A b . B
sin — sn —
2 2
Note:
. A - B[O 5 0B - . [IC—-AQ
sin sin
-b_""H2 Hb-c_"H 24, -a:BZH
- ) B .
c cosc2: b cos'; b cos
10.3.7 Solved Problems
1. Problem: In AABC, if a=3,b=4 and sin A = %, find angle B.
Solution: Fromsinerule, _a = _b .
snA snB

_ 4
bs':A = B‘IH:m B 90°.

OJsnB=

2. Prablem: If the lengths of the sides of atriangle are 3, 4, 5, find the circumradius
of thetriangle.

Solution: Giventhat thesidesof atriangleare3, 4, 5.
Now 32 + 4? =52. Hencethetriangleisright angled and itshypotenuse=5.
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0 Circumradius :% (hypotenuse) = g
(OR)
c
By using SineRule anc =2R
O c=2RSInC
=2Rsin90°
c =2R
5
E.
3.Problem: If a=6, b=5, ¢c=9, thenfindangle A.
b> +¢c®> -a®> _ 25+81-36 _70 _7

Solution: Fromcosinerule, cos A :T = ~%rs "o -9

R= <=
2

0 A Cos* %ﬁ
4.Problem: In AABC, showthat Z(b+c)cosA = 2s.
Solution: L.H.S.

(b +c)cosA +(c +a)cosB +(a +b) cosC

(b cosA + a cosB) + (c cosB +b cosC) +(a cosC +c cosA)
c+a+b=2s. =R.H.S,

5. Problem: If the sides of a triangle are 13, 14, 15, then find the circum diameter.
Solution: Let a=13,b=14,c =15. Then2s=a +b +¢c =13 +14 +15 =42,
s=21,s-a=8,s-b=7,s -c =6.
A = \/s(s -a)(s -b)(s -c) =+/21.87.6 =84.

D%A: 81 4R 84 %3 %4 15

0 Circumdiameter (2R) = 6745
6. Problem: In AABC,if (a+b+c)(b+c —a) =3bc, findA.

Solution: 2s(2s - 2a) =3bc O s(s_—a): 3
bc 4

Elcoszg‘= % cos='6 = cos30%
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7.Problem: If a=4,b=5,c=7,find cosg.
Solution: 2s=a+b+c=4+5+7 =16 0 s 8,3 b= 3

e L 8

8. Problem: In AABC, find bcoszg + ¢ cos’ %

Solution: b cos® % + ¢ cos’ I: =b E,7D+CD
il

a a
A 5 cC 2
9. Problem: If tan E E and tanE T determine the relation between a, b, c.
Solution: tané.tan9:§_2:2_
2 2 6 5 6
- |(s=b)(s-c) [(s-b)(s-a) _2
1€, s(s - a) s(s-¢) 6
0S™® b 55 apms =25 3
S 3
Oa b & 30 +a =c 2b. Hencea,b,c aeinA.P.
10. Problem: If cot '; _btc
A DB CO
Solution: cot 2 =2*€ 2 B, (by 10.3.6)
2 a . A A
sin — sin —
2 2

B—_ZCE A=B C A + CEB A+B+C=2B

0 2B = 18081 B =90°.

- A[]
11. Problem: If tanaia— k cot , find k.
Solution: Comparingwith tan H Aﬁz épb " :Dcot (by tangent law),

c-a
c+a

wegetthat k =
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2

b? - c? _ sin(B -C)

12. Problem: In AABC, show that 7 sn(B +C)°
_ b? —c? _4R*(sin’B -sin’C)
sin’B -sin’C _sin(B+C)sin (B - C) : .
= = , . A= B+C
sin* A sin?(B + C) FsnA=sn(B+Ch
:M =RH.S.
sin (B +C)

13. Problem: Showthat a®cotA + b?*cotB + c’cot C = %

Solution: L.H.S. = a?cotA + b?cotB + c?cot C

= 4R s?A . A L apeanee 5B L arz gnec, 25C
sin A sinB nC
(by sinerule)
= 2R?(2sin A cosA + 2sin B cosB + 2sin C cos C)
= 2R?(sin 2A + sin 2B + sin2C)
= 2R*(4sin A sin Bsin C)
1 . . .
= E(2RsmA)(stmB)(ZRsm(:) = ——RHS
2 zA 2 . 2A 2
14. Problem: Showthat (b - ¢)” cos > +(b +c)" sin > =a’.

Solution: L.H.S. = (b2 +c? —2bc) cos? % +(b2 +c? +2bc)sin2%

= (b* +¢?) ﬁ:osz% +sin? %ﬁ—zmﬁcosz% —sinZ%
= b* +c¢® -2bccos A =a’.
15. Problem: Provethat a(b cos C - ¢ cos B) =b* - c?.
Solution: L.H.S. = abcosC - cacos B
_ Ea2+b2— c20 Dc + a2 —b%]
0o 2 00O 2

, (by cosinerule)

1
- 5%2”’2 -c? —c® —a® +b°] = p2 -? =RH.S,
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c—-bcosA _cosB

b-ccosA cosC’
Solution: Fromprojectionrule, c=acosB +bcosA andb=ccosA +acosC.

16. Problem: Show that

(acosB +bcosA)-bcosA

Now L.HS. =
(ccosA +acosC) -ccosA

_acosB :cosB “RHS.
acosC cosC
1 1 3

17. Problem: In AABC, if + =
a+c b+c a+b+c

, showthat C =60°.

. 1 1 3 b+c+a+c_ 3
Solution: + =
a+c b+c a+b+c (a+c)(b+c) a+b+c

03(& c)(b cf (& b 2c)(ar b+ ¢)
O 3(ab ag be cz): (a2+ b 2ab)+ 3c(ar by 2c?
0 ar a% b% ¢? =2abcosC (fromcosinerule)

0 cos G %D =C 60"

18. Problem: If a=(b-c)sec6, provethat tan@ = E\/E sin%
-c
Solution:az(b—c)sece 0 sec 6= bilc
2 2 [ _ )2
tan? 0 = sec?® -1 = 2 , - :a(bzc)
(b-c) (b -c)
_ (a+b-c)(a-b+c)
b-of
_ 2(s-c)2(s-b) _  4bc (s-b)(s-c)
(b -c)’ (b-cy e
_ 4bc ., A
= 14
(b-c) 2
U tan 6 b sinA
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. O A A U
Solution: L.H.S. = (a+b+c)§an— + tan = 2S[3 +
B(s-a) s(s-b)g

01 10 s-b+s-al
= 2A = 2A
%—a+s—b% s-a)(s-b)F
0

20& = 0 2c cotE = RH.S
s-a)(s-b)g 2

20. Problem: Showthat b%®sin 2C + ¢ sin 2B = 2bc SinA .

Solution: L.H.S. = b?sn 2C + ¢’ sin 2B

4R? sin” B(2sin C cos C) + 4R? sin?C(2sin B cos B)
8R? sin B sin C (sin B cos C + cos B sin C)
8R*sinBsin Csin (B +C)

2(2RsnB) (2RsnC)sn A

2bc sin A =RH.S.

a? +b* +c?
4N

C0SA <[ +c -a*0

(——— 1, (by cosinerule
snA DZbcsmAD(y )

21. Problem: Provethat cot A + cot B + cot C =

Solution: L.H.S. = XcotA = z

2 2 2
- zbJ’fT_a, SI'A:% be sin AE
1
4N
a? +b? +c?

= —  =RH.S.
4A

2162 —a2 +c2 +a2 -b? +a2 +b? _025

22. Problem: Showthat a coszg + b cos? % + ¢ cos’ % =s +é.

R

Solution: L.H.S. 2 A

T aco %Za(1+cosA)

Z(a+acosA) :%(a +b +c) +% Z(2R sin A cos A)

NIFR N

(25) +% Tsin 2A =s +%(sin 2A +sin 2B +sin 2C)
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- s+%(4sinAsinBsinC)
- s+l(2stinAsinBsinC)
R
- s+% (-a=2R*snAsnBsnC) = RHS

23. Problem: In AABC, if acos A =b cos B, provethat thetriangleiseither isosceles or right
angled.
Solution: acosA =bcosB [0 2R sin A cos A 2R sinBcosB

0 sin2& sin2B sin (180> 2B)
Hence 2A = 2B or 2A =180° - 2B.
O A B o A=(90° -B)
O & b or(A+B)=90°
O & bor c=090°.
[0 Thetriangleisisoscelesor right angled.

24. Problem: If cot%:cot%:cot%:?;:&?, showthat a:b:c=6:5:4.

Solution: coté:cotE:cotE:3:5:7
2 2 2
. s(s—a):s(s—b):s(s—c)_ 357
A A A
O (s a):(s b):(s cF 3:5:7
S

c
3 s 7 k (say)
Thens-a=3k,s-b =5k,s —c =7k
Addingtheseequations, 3s - (a + b +c¢) =3k +5k +7k =15k
0 3s 2s 15k1 =s 15k. Hence a =12k,b =10k, c =8k
Oa:b:e 12k:10k:8k 6:5:4.
25. Problem:Provethat a’cos (B - C) +b® cos (C —A) +¢® cos (A -B) =3abc.
Solution: L.H.S. = £a’cos(B -C) = Za*(2R sinA) cos (B -C)

RZa’. PPsin (B+C) cos(B-C)g =R za*(sin2B +sin2C)

O

RZa’.(2sinBcosB +2sin CcosC)
S’ (2R sin B) cos B +a’(2R sin C) cos CH
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= Z(azb cos B + a’c cos C)

= (azb cos B + a’c cos C) + (bzc cosC +b%acosA) +

(cza cos A + c?b cos B)
= ab(acosB +bcosA) +bc (bcosC +ccosB) +
ca(ccosA +acosC)
= ab(c) +bc (a) +ca(b) =3abc =RH.S,
26. Problem: If Pi, P2, Ps are the altitudes of the AABC then, show that
1 1 1 cotA +cotB+cotC

A A
Solution : Since Pus P2: Ps arethealtitudesof AABC, wehave
AzlaQ:EbpzlepsD Q:%’pzz%’ps=%
2 2 2 a b C
|\|0Wi+i+i =M :l(cotA + cot B + cot C)
S an? A
=R.H.S. @ cot A +cot B +cot C :$, from problem (21)@.

27. Problem: The angle of elevation of the top point P of the vertical tower PQ of height h froma
point Ais45° and froma point B is 60° where B isa point at a distance 30 meters from the point A
measured along the line AB which makes an angle 30° with AQ. Find the height of the tower.

Solution : IntheFig. 10.6 P

PQ =h  [PAQ =45
BAQ 30°and |PBC = 60°
Also AB = 30 mts.

0 [BAP = |APB = 15°.
Thisgives BP = AB =30and
h =PC+CQ = BPsn60°+ABsn30° A
= 15J3+15 = 15(/3 +1) metres. Fig. 10.6
28. Problem: Two trees A and B are on the same side of a river. From a point C in the river the
distances of the trees A and B are 250 m and 300 mrespectively. If the angle C is 45°, find the distance

between the trees (use /2 = 1.414). c_fve
Solution: Fromthetriangle ABC, usingthecosinerule 45°
AB2 = 2502 + 3002 - 2(250)(300) cos 45° $om 250m
=100(625 + 900 — 750+/2 ) = 46450 : 5

O AB = 215.5m. (approximately). Fig. 10.7
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12.

Exercise 10(a)
(Note: All problemsinthisexercisereferto AABC)

Showthat $a (sin B - sin C) =0.
If a=+/3 +1cms.,|B=30°|C =45°, thenfindc.

If a=2cms., b=3cms., c=4cms, thenfind cosA.
If a=26cms., b=30cms. and cos C :%,thenfind C.

If theanglesareintheratiol: 5: 6, thenfind theratio of itssides.
Provethat 2(bc cos A + cacosB +ab cosC) =a® +b® +c?.

a’+b®-c* _ tanB

Provethat ————— = :
cc+a -b tan C

Provethat (b + c) cos A +(c +a) cosB +(a +b) cosC =a +b +c.

Provethat (b — a cos C) sin A =acos A sin C,
If 4,5 aretwo sidesof atriangleand theincluded angleis60°, finditsarea.

Show that bcoszg + ¢ cos’ % =s.

a _ b _ ¢ . .
If osA  sB  cosC’ then show that AABC isequilaterdl.

Provethat acosA + bcosB +ccosC =4R sinA sinB sinC.
Provethat a’ sin(B - C) =0.
asin(B-C) _bsin(C-A) _csin(A -B)

Provethat & " 7
Provethat zgm =
sinB +sinC
a CcosA b cosB ¢ cosC
Provethat — + = —+—— =+
bc a ca b ab C

1+ cos(A -B)cosC _ a? + b?
1+cos(A -C)cosB a>+c?’
If C=60° thenshow that

a b b a
(I)b+c c+a (”)Cz_az CZ_bZ
If a:b:c=7:8:9,find cosA : cosB : cosC.

Provethat

Mathematics- 1A
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2 2 2
ShowthatCOSA +cosB*_cosC_a +b® +c _

10.

1.

12.

13.

14.

b c 2abc
Provethat

A - B[O A +B]

(b - a)cosC + c(cosB - cosA) =csin HTHcosecﬁﬂ .

Express a sin’ % +csin’ % intermsof s, a, b, C.

B
If b+ c =3a,thenfindthevaueof cotE cot%.

B-C

+
Provethat (b+c) cos B+C _ acos

b’-c* _sin(B-C)

InaAABC show that ——— = = ,
a sn(B+C)
A B C_¢&
Provethat j) cot— + cot— + cot— = —
ove (i) > 5 > X
C bc+ca+ab-¢°

(i) tané + tanE +tan— =
2 2 2 A

tA+ tB+ tC 2

(iii)

COtA +cotB + cotC a2 +b? +¢?

Show that (|)Z a+b tanEliﬁ 0.

(ii)b_ccoté+b+ctanA:ZCosec(B—C).
b+c 2 b-c 2
0] Ifsinezi,thenmowthatcosezz“bc cosé
b+c b+c 2

2\bc A

ii If a=(b +c)cos6, thenprovethat sin 0 = .
(i) (b +c) p o 95

(i)  Forany angle®, showthat a cos® = bcos(C +60) +c cos(B -0).

If theanglesof AABC areinA.P.and b: ¢ = +/3: /2, thenshow that A = 75°.

a®+b®> _ snC

If =
a’-b> sin(A-B

) , provethat AABC iseither isoscelesor right angled.
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1n.

12.
13.

14.

15.

16.

17.

18.
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If cosA + cosB + cosC = 3/ 2, thenshow that thetriangleisequilateral.

If cos’ A + cos’ B + cos” C =1, thenshow that A ABC isright angled.
If a? + b? + c® = 8R?, then provethat thetriangleisright angled.

If cot%, cot%, cot% arein A.P, thenprovethat a, b, c areinA.P.

If sinZ%, sinzg, sinzg areinH.P, thenshow that a, b, ¢ areinH.P.

_ Oa? +b%0 .
If C=90°then provethat ms n(A-B) =1

2 2
Show that %sin2C+%sin2A =A
A lamp post issituated at themiddle point M of theside AC of atriangular plot ABCwithBC=7m,
CA =8mand AB =9 m. Lamp post subtendsan angle 15° at the point B. Find the height of the
lamp post.
Two shipsleaveaport at the sametime. Onegoes 24 km per hour inthedirection N45° E and other
travels 32 kmper hour in thedirection S75° E. Find the distance between the shipsat theend of 3
hours.

A treestandsvertically onthedant of thehill. Fromapoint A ontheground 35 metersdownthehill
from the base of thetree, the angle of elevation of thetop of thetreeis60°. If theangle of eevation
of thefoot of thetreefrom A is 15°, then find the height of thetree.

3
Theupper 2 th portion of avertical polesubtendsanangle Tan™ 3 at apointinthehorizonta plane
throughitsfoot and at adistance 40 mfromthefoot. Given that {ﬁevenical poleisat aheight less
than 100 m from theground, find itsheight.

AB isaverticd polewith B a thegroundleve and A at thetop. A manfindsthat theangleof eevation
of thepoint A from acertain point C on thegroundis60°. Hemovesaway from the poleaongthe
lineBCtoapoint D suchthat CD =7 m. From D, theangle of elevation of thepoint A is45°. Find
theheight of thepole.

L et an object be placed at someheight hcm and let Pand Q betwo pointsof observationwhich are
a adistance 10 cmapart onalineinclined at angle 15° to the horizonta. If theanglesof eevation of
the object from Pand Q are 30°and 60° respectively then find h.

10.4 Incircleand excirclesof atriangle

Inthissection, thenotionsof incircle, inradius, excirclesand ex-radii areintroduced.
Therdationsbetween theinradius and exradius of acircle are established.
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10.4.1 Definition

The circle that touches the three sides of atriangle A ABC internally is called the ‘incircle
or ‘inscribed circle’ of thetriangle. The centreand radius of thisincircle are called incentreand
inradius denoted by | and r respectively.

The point of concurrence of the internal bisectors of the angles of a triangleisthe incentre
| of AABC. |isequidistant fromall sides of the triangle.

10.4.2 Theorem : In AABC,
(1) A=rs

(i) r = (s—a)tané:(s -b) tanE =(s —c)tanE
2 2 2
(i) r = Bel c” cb A AC B
cot — + cot — cot— + cot— cot— + cot—
2 2 2 2 2 2

(iV) r = 4R sin % sin % sin % wherer istheinradius,

Pr oof

Let | bethepoint of concurrence of theinternal bisectorsof theanglesA, B, C of the A ABC, sothat

| istheincentre. A
Draw ID O BC, |E O CA,I F [ AB.
Then ID =1E =1 F =r = inradius.

Draw theincirclepassing through D, E, FasshowninFig. 10.8.

E
() A = Areaof AABC r

= Areaof ABIC + Areaof ACIA + Areaof A AIB
_lec.D+lca.lE+ L AB.IF

2 2 2 o
:}ar+}br+icr B D

2 2 .

Fig. 10.8

1 1
=2 (a+b+c) =2 (2s) =rs.

(i) Thecirclepassingthrough D, E, Fistheincircleand A isan externd pointtothecircle. AF, AE arethe

tangentsdrawn to the circlefrom A. Hencethelength of thetangentsAF and AE areequal. By a

similar argument, BF=BD, CD =CE.

But AF+AE+BF+BD+CE+CD=a+b+c.
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0 2AF+2BD +2CD= 2s i.e, 2AF +2(BD + CD} 2s.
Hence AF+BC=s i.e,AF+a=s i.e, AF =s -a-
A_IF_ T A
Intheright angled A AFL, tan — =— = ——. OF (s a)tan—.
2 AF s-a 2

Similarly, wecanprovethat r = (s —b) tan g and r = (s —c) tan%-

(i)  Fromtheright angledtrianglesIDB and IDC, we have

B _BD D .
COtE:Tand c;o%:TC I.e., BD=rcot%andDC=rCOtE

O& BD +DG rET;ot%+ cot%ﬁ 0 e

a
cot B, cot ¢
Inasimilar way, we can provethat 2 2

r= b and r= ¢
cot9+cotA COtA+COtE
2 2
0 B cO EcosE COSEE
(iv) From (iii), a=r t — + cot — =13 2 4 ZD
52 2H B C
Usin — sin=0
2 20
sEsm9+cosgsmEB
; 2 2 2 2
U 2R.sin/A~A r 3 0
.. B . C
O sSn —sn — O
O 2 2 O
A B + CJ B
O 2R. 25m— cos—— r rsin sin — sin
ﬁ' H 2 H/H 2 ﬂ
O 4Rsinf‘= _ Bcos—A— sin ﬁﬁ%
2 smasm— 2 2

W= 4RsinésinEsinE_
2 2 2

10.4.3 Note: From Theorem 10.4.2, we have
A A A
— =r=(s-a)tan — j = - n
S ( ) > e A s(s-a) tan 5

D\/s(s— a)(s b)(s cF s(s a)tan'g Dtan%-—- %
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Similarly, we can provethat

. J(s—c) 2] g - J(s—a) =)

s(s-b) s(s-c)

10.4.4 Definition

Thecirclethat touchesthe side BC (oppositeto angle A) internally and the other two sides AB and
AC externally iscalled the ‘excircle’ or ‘escribed circle’ opposite to the angle A.

The centreand radius of thisexcircle, oppositeto theangle
A are called excentre and exradius, denoted by |, and r,
respectively.

The point of concurrence of the internal bisector of the B X, \C
anlge A and the external bisectors of angles B and C of
AABC isthe excentre |, . | is equidistant from all sides of Z, y \¢
thetriangle (Fig. 10.9). r

Smilarly, we have two more excircles opposite to anlges l
B and C. / \
The centres and radii of these excircles are denoted by
l,1,and r,,r, respectively. Thetriangle obtained byjoining Fig. 10.9
theexcentres |, 1, , |, iscalled the ‘extriangle’.

1''2'°3

10.4.5 Theorem : In AABC, l,.1,,1, areexcentresandr ,r,andr,areexradii of the excircles

opposite to theangles A, B, C respectively, then
A AL A
s-a' ? * s-c

C
=(s -b hed
(s —b) cot

(i) n=

s-b’

N A B

I) r=stanh— =(s—cC)cot —

(i) 1, = stan = = (s ~¢) cot -
(i) r, = a r, = b r, = ¢

1= B c’ 2 C A3 A B

tan — + tan — tan — +tan — tan — +tan —

2 2 2 2 2 2

r, = 4R cosésinEcosE
2 2 2

(iv) L =4R sin A cosE cosE
2 2 2

r, =4R cosA cosE sin E.

2 2

Proof : Let1, bethepoint of concurrenceof theinternal bisector of angle A and external bisectorsof angles
B and C of the AABC. Then |, isanexcentre.
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Draw I, X, OBC, |, Y, AC (produced), |,Z, OAB (Produced)
Thenl, X; =1,Y; = 1,Z, =1, = ex-radius.

Draw theex-circlepassingthrough X, Y, Z, asshowninFig. 10.9.

A

areaof AABC = areaof A Al,B + areaof A Al,C - areaof BI,C

1 1 1 1 1 1
= SAB.LZi+-ACLY, -2 BC.IXy = Con+ by - an

r r A
= 2(c+b a) = 22(s -a) =r(s -a), OrF T

A A

Similarl that r. drg=——:.

milarly wecan prove 2= g _p A=
Sincethetangentsfrom any external pointtoacircleareequal, wehave AY, =AZ, (SeeFig. 10.9).
Similarly BX,=BZ, and CX, =CY..

But BX, =BZ, =AZ - AB =AY, -AB; X,C=CY, =AY, -AC.
Adding BX, + X,C =2AY, -(AB +AC) i.e, BC=a=2AY, —(c +b)

2AY, =a+b+c=2s ie,AY, =s =AZ,.

Then BX;=s-c and CX; =s-b.

Now fromright angledtriangles Al; Z,, Bl, Z,, Cl,Y,,wehave

lLAZ, = 1,BX, =90° - % and |1cx1:90"—E

InAIlAzl, tanézﬁziﬂrlz stané_

2 AZ, s 2
|nAIBX1,tan§ao° BO_ X,
BX,

O cot132= —1f =r, s c)cot%

s-c
In A LCX,, tan%oo_gﬂzﬁ
20 ¢cx,
Octe g =, s b)cotE
2 s-b 2

Or= stan—';= (s c)cotg: (s b)cot =
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Similarly we can provethat

B C A
r,=stan — =(s —a)cot — =(s —c) cot —
C A B
and r,=stan — =(s-b)cot — =(s —a) cot =
(i) From A I,BX,, cot %OO zﬁ BX, , (from (ii))
1
O tan B % BX, r tan E
2 r 2
CO CX C CX C
In A LCX,, cot %OO ZH O tan? Tl’rﬂ CX, tanE
_ _ _ CO _ a
a—BC—BX1+X1C—r1§an—+tan—H_ u e B c
2 2 tan — + tan —
2
Similarly, wecan provethat r, = b A and r, = ¢ R
tan — + tan — tan—+tan§
0. B . C[O
. B co_ 090 sSh>0
(iv) From(iii),a=rn, ﬁan > +tan EH =1 + cO
[cos — cos -0
[ 20

0 2RsSnA 1 %nB cosg cosBsinCﬁ/DcosB coscD
2 H
. A A . B+ C
0 2R.2sn—cos—= r n cos—cos
27 "F Wﬁ E

rn B + CJ

A
0 4Rsm—2— COS— BCOS__ snﬁ—%
2

O r© 4Rsin A (:osE cosE.
2 2 2

. C
Similarly, wecan provethat 1, = 4R cos > sin > cos P and
r, =4R cosA cosE sin E.
2 2 2

10.4.6 Solved Problems

1. Problem: In A ABC, provethat 1 + 1 + 1 :}.

Solution: L.H.S. -1,1,1_s-a +S_b +5-¢C
n f; I3 A A A
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3s-(a+b+c -
3 ) _3-25_s 1 _pug
A A A
2. Problem: Showthat i 1, r; = A%
A A A A
Solution: LH.S. =rrr, r, =—. . . .
2% s’ s-a s-b s-c
4
:A—2 =A? =RHS.
A
3. Problem: Inan equilateral triangle, find the value of r / R.
_ 4R sinésinEsinE 3
Solution: F = 2 2 2 _4gn®30° = 4220 1. (--A:B=C:60°)'
R R HoH '

4. Problem: The perimeter of A ABC is12 cm. and itsinradiusis 1 cm. Then find the area of the
triangle.
Solution: Giventhat 2s=12cm.and r=1cm. Then A =rs=(1).(6) =6 sqcm

5. Problem: Showthat rr, = (s = b) (s -c).
Solution: LHS.= rr, = as ~b) tan gaa(s —c) cot %
=(s-b)(s-c)=RH.S.

acosA +bcosB +ccosC .

6. Problem: Express intermsof R and r.
atb+c
. 2RSNA cosA + 2R sin B cosB + 2R sin Ccos C
Solution:
atb+c
_R(sin2A +sin 2B +sin 2C) _ R(4sinA .sinB.sinC)
2s 2s
_2R*snAsnBsnC _[AQ 1 _r
SR HsH'R "R
7.Praoblem: In AABC, A =6sg.cm. and s= 1.5cm,, find r.
Solution: r :é :iz4cm
s 15

8. Problem: Showthat rr; cot% =A.

Solution: rr, cotA =40 tan ADcot AL A-
2 " sH M 2H™ 2



Propertiesof Triangles

9. Problem:

Ifa=13,b=14,c =15, find r,.

Solution: 2s= a+b+c=420 s 21. Then s-a=8,s-b=7,s-c =6

AZ

Ore

=21x8x7x6 A= % 12 84 sgunits
A _ §4: 10.5 units.
s—-a 8

10. Problem: If rr, =1, 13, thenfind B.

Solution: rr, =nrp 0 —.

O

O

11. Problem: Ina AABC, show that thesides a, b, c arein AP.ifandonlyif r,r,,r; areinH.P.

A A A A

s s-b s-a s-c
(s a)(s cF s(s b)O (s;(c;)gsb;a)_
tanjB: I B 43 =B 90°,
2 2

1

: : 11 ,
Solution: r,r,, r;aeinHP. = —,—,— aeinA.P.

hnrn n

s—-a s—-b s-c

w

0 tan® 1.

2

= , , aeinAP. - s—-a,s-b,s-caeinA.P

A A A

- —a,—-b,-caein AP - ab,caeinA.P.
12. Problem: If A= 90° showthat 2(r + R) =b +c.

A
Solution: LH.S. = 2r +2R = 2(s-a)tan 5 Y 2R.1

= 2(s-a)tan 45’ +2R sin A (-.-A:

(2s-2a).1+a
= b+c=RH.S.

9o°)

13. Problem: If (r, =r)(r;=1,) =271, 13, show that A= 90°.

Solution: (r, -

rl)(r3 - rl) =21, 1,

0 O A A EE A A O 5 A A
ds-b) (-agal-o (s-af (s-b) (-0
Os-a-s+bd Os-a-s+cd 2K

2% Bs-p)s-a H-o)s-af (5-b)s o)

O (b a)(e aF 2(s a)2
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O (b a)(e aF Zﬁug
0 2(be ca ab a): b% c* a* 2bc- 2ca 2ab
0 2a% b% c¢& a2 0O b% c& a2

Hence A ABC isright angled and A = 90°.

14. Problem: Provethat AL = a.
Nh+thfa+in
: A A A A A A
Solution: r1r2+r2r3+r3r1:s—a's—b+s—b's—c+s—c's—a
_AZDS_C+S_a+S_bD— A2(3S—ZSS Ns? ]
B as— a)(s - b)(s —c)%_ s(s -a)(s -b)(s -c)  A?
dn(n, +1,) = A OA  AD_ N? Ds—c+s—bg
and itz 7 s—aE{s—b s—c% s—aas—b)(s—c)g
_ s.A%a _s.A% _ as
s(s-a)(s-b)(s-c) A?
r(r, +13) _as _

Hence =
Whh+nn+nn (s

2 2 2
15. Problem: Show that iz + i + i +i :m.
r

Zoorforf A2
Solution: L.H.S. = i+i +i +i
’ o r2 I,12 r22 r32
2 2
_ s ,(s-a) (s-b) (s-c)
AZ AZ Az AZ
1
S Lo L DR GRS
1

= E% +s’ -2as +a® +s’ —2bs +b® +s* -2cs +s°
= %Bﬂsz -2s(a+b +c) +a* +b* +c*H

a’ +b2+c

= Bﬂs - 2s(2sH+ —F—

+b% +
= ""A# =RH.S.



Propertiesof Triangles

B - CO

16. Problem: Provethat 5 (r +r ) tan 0" =0.

Solution: r +r, = 4R siné sinE sinE +4R siné cosE cosE
2 2 2 2 2 2

4R sin— %n— sm— + cosBcos—E

= 4R sin— COSB;Cﬁ
ESlnDB_CDS
O (v rl)tanDB_CD 4R sin 2 cosHB -4 5 i 2 EEI
H2 H > H 2 H%osDB_C%
2
= 4R cos HicﬁsmﬁB—H
= 2R(snB-snC) = b-c.
Hencle+r tan B—DB Cﬁ =0.

17. Problem: Show that NP ) :E —i.

bc ca ab r 2R

L or,

Solution: LH.S. = b_l+c; +i = E[ar1+br2 + Cry
=—§Za s tan _izstinAtané
abc 2

A ]

A A DS'nEE[D

= —Z[ZR 2sn— cos—. D—[]]]

g ZEE

Rs 2AD s Dl cosAD abg]

= e TP 2H"a 0=

= 2—1r(1—cosA +1-cosB +1 —cosC) (-1 =Ns)

= 21 BB - (cos A +cosB +cos C)H
r

= % EL+4s,m—smES|nEm
2 2
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18. Problem:If r : R : 1, = 2:5:12 then prove that the triangle is right angled at A.
Solution: If r:R:rp=2:5:12, thenr = 2k, R =5k, and r; =12k for somek.
r—r =12k -2k =10k =2(5k) =

O 4RsinéDosEcosE— sinEsin91 2R
7 B3 %7 2 2H

. A B + C[O
O ZSHECOSBTE 1
., A l Hy B +C[ .AD
0 sn —2—- 2, HCOSB?E sn ZH

Dsing: A sin 4571 =';i /= = A 90°-

J2

Hencethetriangleisright angledat A.
19. Problem: Showthatr +r, +1, —r, =4R cos B.

A A BO_

. C -B
4Rsm—% > n— +COSECOS_H 4RsmEcos§A%§_

4R cos — % é SE _COSé SnED
2 2 o2

Solution: r +1,

n-n

C_. [OA-BO
4RCOSESnBTH_
A- B0
Ur - - r,= 4R§|n—cosaiﬁ cos an—HH
4RSInHE+E_EH

: B BQO
4R sin %00 "5 "3H = 4RcosB.
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20. Problem: If A, A, ,A,, A, aretheareasof incircle and excircles of a triangle respectively, then

prove that 1 + ! + 1 -1
JA A YA VA
Solution: If r,n,r,,r; are the inradius and exradii of the circles whose areas are

AA LA, A, respectively, then A =t r?, A, = 7, A, = it Ay = i

JA =T, (A =T, Ay =T, (A, = .

1 101 1 10 1Mo 1

1 1
0 + + + =+ -0 = — = =
A VA, YA, YAt o no JEEFH

21. Problem: Showthat (r, + r,) sec® % =(r, +1,)sec® — —(r +1,) sec %
: co, A B A BO
Solution: r, +r, = 4R cos — gm— cosE +cosE sm—a
_ C . DA +BQ ,C
= 4R coszsmﬁiﬁ 4R cos’ >
O (v r)secz—cz:— 4R
» A , B
Similarly, wecan show that (r2 . )sec B =(r3 + rl)sec > =4R
O(rF r,)sec®= (1 1,)sec® == (r# r)seczg_

22. Problem: In AABC, if AD, BE, CF arethe perpendicularsdrawn fromthe verticesA, B, C to
the opposite sides, show that

—"‘i"‘—:l d (ii) AD.BE.CF = (abc)2
) ap "BE "cF ¢ @ () AD.BE.CF= o
Solution: SinceAD 0O BC, (seeFig. 10.10),
1 20N 2A
A== 0 AR == =
5 BC.AD BC a2
I 27 2/ A
Similarly we get that BE = o and CF = -
N 1 1 +i=i+£+£ :é :E :E
WO AD"BE'CF 2a 28 "2a 28 A v
3
(i) AD.BE. CF—2—A %ézﬁ
a b c C
_ 8 [abed _ (abe)’ . D:| .
abc H4RH ~ 8R® -

Fig. 10.10
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23. Problem: In AABC, ifr, =8,r, =12, r; =24, finda, b, c.

A A
Solution: rL=8 0 = 8 0s & —
s—a 8
=120 2= 121 s =p 2.
s-b 12
r, =240 A 24] -s =c LY
s—-cC 24
: m 1 10 1 A
Adding,3s-(a+b+c)=AF +—= +—[0 38 2sA %]:s =,
9,35 ( ) B "12 " 24H Ha 4
Now r:_:A:
s [OAQ
Ha
But A2 =rnr,r, =4 x8x12 x24 =(8 x12)° [A = 96 . units.
and s=é:%:24. Hencea=s—é:24—%:24—12=12.
r 4 N 8
96 96

Smilalyb=24->—=24-8=16;, c=24-— =24 -4 =20.
12 24

24. Problem: Show that ab-nr, _bc-rnrn _ca-nn _

I3 ] P

Solution: ab - r,r, = (2R sin A) (2R sin B) - EﬁlR sin% cos% cos%ﬁ EﬂlR cos% sin% cos%ﬁ

) ] ] Cm. . A ATl .. B B]
= 4R? sin A sin B - 4R? Fros® —F2 sin— cos 2sin— cos
08 ZHH 9N OS5 297 %
= 4stinAsinB—4R2coszgsinA sinB

4R? sinA sinBﬁ—coszgﬁ = 4R? sinA sinB sinzg-

4R2%sinA cosémz sin B cosB] sian
Now @b —nr - 2 ZEH 2 ﬂ 2
I A B. C '

4R cos— cos— Sin—
2 2 2

= 4R siné sinE sinE =r
2 2 2 :

- bc-r,r; _ca-rqr
Similarly we can show that 23 = 81 =y,

I I
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Exercise 10(b)

(Note: All problemsinthisexercisehavereferenceto AABC)

|. 1. Expresszr, cot% intermsof s.

2. Showthat Zacot A =2(R +r).

InAABC,provethat r, + 1, +1; —1r =4R.

3
4. InAABC,provethatr +r, +1, —r, =4Rcos C.
5. If r+r +r,=r, thenshow that C=90°.

1

. Provethat 4(r, r, + 1, 1y + 1, 1) =(a +b +c)’.

2. Hovethm%_lggl__%%_lg_abc_4R
O noar ror o A% s

3. Provethat r(r, +r, +1;) =ab +bc +ca -5,

(s—b)l(s—c) r

5. Showthat (r, + rz)tan% =(r, - 1) cot% =c.

4, Showthat ¥
6. Showthatr,r, r, =r° cot? 2 cot? B o2 &
2 2 2
[11.1. Showthat cosA + cosB + cosC =1 +%.

2. Show that cosZ% + coszg + coszg =2+

2R
3. Showthat sinzé +sinZE + sian —1-
2 2 2 2R
. rr .. AR -1, -
4. Showthat (i) a=(r, +r) |[—% (i) A=nr, [—2—2.
2 I3 n+r

5. Provethat r? +r2 + 12 +r? =16R? —(a2 +b? +c2).

6. If p;, Py, P; aredtitudesdrawvnfromverticesA, B, Ctotheoppositesidesof a trianglerespectively,
then show that
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1 1 1 1 .1 1 1 1
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(1)_+_+—=— (11)—+———:—
P P Pz T P P P31
i) (abe)’  8A®
) prpr P3= SR> abe
65 21
7. Ifa:l3,b:14,c:15,sh0wthatR=?,r:4’r1 =3,7‘2=123.ndl’3=14,
8. Ifn=2,r,=3p,=6and r =1,Provethat a =3, b =4andc=5.
Key Concepts
b

°oe

°oe

0

°oe

”oe

c

Law of sines or sine rule : In A ABC,

sinA sinB sinC

2R

Cosine rule or Law of cosines : In A ABC, > = ¢? + a*> — 2ca cos B;

¢t =a*>+b>—2abcos C; a’=b*+c* —2bc cos A

B-C b- A
Napier analogy or tangent rules: In A ABC, tan = b € cot =
+c
C-A c-a B A-B a-b C
tan = cot —. tan = cot —
2 c+a 2 ° 2 a+b 2
Half - angle formulae: In A ABC,
- b _ _
sin i: \/(S )(S C),Coséz M and
2 bc 2 be

and similar expressions for

A_ =069
2 \/ s(s—a)

. B . C B C B C
sm E, s 5; Cos 79 €0S—, and tan —, tan —-

A =Area of the triangle ABC = %bc sinA = ;— ca sin B = % ab sin C

A= \/s(s - a)(s — b)(s — c) = abe

4R
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% InAABC,
A - B[ B-QJ C-A
cos Cco: co
a+b _ B 2 H_b+c_ % ZE_c+a % ZE_
. sing el siné b sinE
2 2 2

< Thecirclethat touchesthethreesidesof a A ABCinternaly iscalledtheincircleor inscribed
circleof thetriangle. Thecentreand radiusof thisincirclearecaledincentreand inradius, denoted
by | andr respectively.

< Thepoint of concurrenceof theinternal bisectorsof atriangleiscaledtheincentrel of
AABC.

< Thecirclethat touchesthe sidesBC internally and the other two sidesAB and AC externally, is
calledtheexcircleor escribed circle oppositeto angle A.

< Thecentreandradiusof thecircleoppositeto angle A arecalled excentre and exradius denoted
by |, andr, respectively. Similarlyr,,r andl,, L.

< InAABC, r:é, = a Iy = a ,r3:A
s s—a s-b s—-cC
r:4RsinésinEsinE; n=4R sinA cosE cosg;
2 2 2 2 2
r, =4R cosésinEcosg; r, = 4R cosA cosE sing_
2 2 2 2 2
Ve
Historical Note

Triangleshave been usedin decorative pattern fromtheearliest times. Someof thefirst geometrica
discoveriesreated to the propertiesof triangles, likethe oneabout right angled triangle, aretraditionally
ascribed to Pythagoras. But the sulbasutra period hasgivenus, inIndia, severd interesting properties
of triangles, centuriesbefore Pythagoras. Like Ceva stheorem, many theoremsdeal with properties
of triangles.

But the systemati ¢ approach to Geometry in genera and propertiesof trianglesin particular can
betraced to Greek period and to Euclid’'s Elements. The Greeksing sted that geometric fact must be
established, not by empirical procedures, aswasthepracticein many earlier cultures, but by deductive
reasoning and geometrical conclusionsmust bearrived at by logical demonstration rather than by trial
and error experimentation.

In short, the Greekstransformed the empirical geometry of theancient Egyptians, Babylonians
and | ndians, intowhat we might call, deductive or demonstrative geometry.
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Chapter

Sets

I ntroduction

Set theory owesits originto the German mathematician George Cantor (1845 - 1918) who developed
this theory while he was working on trigonometric series. The concept of a set is fundamental for the
development of abstract algebra. Knowledge of setsisheavily requiredinthe study of several branchesof
mathematicslike Analysis, Probability, Number Theory, Discrete Mathematics, Graph Theory etc.

1.1 Set

A setisawell defined collection of objects. By well definednesswemeanthat itispossibleto decide
whether agiven object does bel ong to the given collection or not.

Obegjctsof aset arecalled elements.

1.2 Examples

Thefollowing collectionscongtituteaset :

Thevowelsinthe Englishalphabet : a, e,i, 0, u constitute a set.
All natural numberswhich aredivisorsof 36.

All primenumbers.

> wDh e

All theriversflowinginIndia
5. All rationa numbers.

Note: Elementsof aset arerepresented generally by lower caseletters a, b, ¢, p, g, 1, ... and setsby upper
case (capita) lettersA,B,C,L,M N, .....
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1.3 Representation of a set

Therearetwo methods of representing aset. They are
(i) Roster or tabular form, and
(i) Setbuilderform
IntheRoster form, elementsof the set arelistedinarow, seperated by commas and enclosed within
abrace{ }. For exampletheset of al divisorsof 36isrepresentedintheroster formas: {1, 2, 3,4, 6, 9,

12,18, 36}. Thoughitiscustomary to list the elementsinan order, ordering of € ementshasno importance
or rlevanceinthelisting. Smilarly dl dementsinthelisting aretakento bedistinct.

Inthe Set builder form, acommon property or acharacteristic property that ispossessed by al the
elementsinthewell defined collectionisused to describethat set. A general element, say xischosento
represent theset, followed by acolon () or avertica line(]) whichisthenfollowed by the characteristic
property satisfied by al those e ementsand enclosethe wholedescription in braces. For example:

Q: {x|xisarational number}.

Inthe above description, thebracesstandfor ‘theset of all’ andthe vertical linefor *suchthat’. We
readitas” Q istheset of al x suchthat xisarational number”.

1.4 Classification (Types) of sets

1. Empty set or null set

Thereisaunique set that doesnot haveany eement init. Thisset having no dementsiscalledthenull
set or empty set. Itisusually denoted by @ or{ }.

Example: A={x:x2=16 andxisanoddinteger} isan empty set, becausex? = 16 isnot satisfied
by any odd integer.
If A isnot theempty set, thenwesay that A isanon-empty set.
2. Finiteand Infinitesets

Fromtheexamples(1, 2), weunderstand that the number of el ementsintheset may befiniteor infinite.
A setissaidto befiniteif it consstsof definite number of elements. Otherwiseitisinfinite.

3. Equality of sets

If A and B aretwo sets such that every member of A isamember of B and every member of Bisa
member of A, thenwesay that A and B areequal and write A =B. For example,

Let A={1,2,3} andB={2,3,1}. ThenA =B.
4. Subset and Super set

If A andB areany two sets, wesay that A isasubset of B or Bisasupersetof A if XOA [0 xOB
andwewrite A [0 B. If B containsdl theelementsof A and at least onedement whichisnot inAi.e,
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A 0B andA # B, thenwe say that A isaproper subset of B andwewriteALIBorB OA. Every
non-empty set hastwo improper subsets namely theempty set and the set itself.

Example: Theset Q of rational numbersisaproper subset of the set of real numbersR.

5. Power setof aset: If Ais any set, thentheset of all subsetsof A iscalledthepower set of A andis
denoted by p(A) or 2°(A).

Example: Let A ={1,2,3}. Then

AA) = {e{1}.{2},{3}.{1 2.{2,3},{1, 3}, {1 2 3}}.

6. Universal set @ Itiscustomary that the superset A, taken hereto define the complement, iscalled the
Universal set andisdenoted by U. The complement of aset Sintheuniversal set U consistsof all
elements of U which are not the elementsof S. Itisdenoted by S = U \ S. Observe here that
(A" =Aforany subset A of theuniversal set U.

7. Digoint sets: If two sets A and B are such that they do not have any elementsin common, i.e.,
A n B=@ then A and B aresaidto bedis oint sets.

Example: Let A = {x]|xisavowe in Englishaphabet}, and
B = {y|yisaconsonantin English aphabet}.
ThenA n B=@andhenceA, B aredigoint sets.

1.5 VennDiagram

Sets, relationships between sets and operations on sets can be more conveniently represented by

diagrams, knownas'\Venn diagrams’, named after the Englishlogician John Venn (1834-1883). Inthese
diagrams, auniversal setisrepresented by arectangleand al itssubsetsby small circles, insidetheuniversa
Set.

Examples

1. Theunion of twosetsA andBi.e, AOB ={x|x OA or x O B} can be represented by the
shaded portion in thefollowing Venn diagram.

U AOB

2. Theintersection of twosetsA andBi.e., A n B={x|xUOA and xIB} canberepresented by the
shaded portion in thefollowing Venn diagram.
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Z7
R,

22

|
AnB

3. Thedifferenceof thesetsA andBi.e.,, A\B ={x|xOA and x[B} can berepresented by the
shaded portion of thefollowing Venn diagram.

u A B
A\NB
4. Similarly BN A = {x|x OB and xJA} isshown by the shaded portion of thefollowing Venn
diagram. UA 5
B\A

Note: Fromthese Venn diagramswe observethat thesets A n B, ANBandB\ A are mutualy digointi.e.,
theintersection of any two of themistheempty set .

1.6 Operationson sets

Let A and B beany two sets. Then wedefinethefollowing operations on these sets.
1. Theunion of A andB, denotedby A [0 B isdefinedas A 0 B ={x|xUA or xUB}.
2. Theintersection of A and B, denotedby A n BisdefinedasA n B={x|xOA andx[B}.

3. Thedifference of thesets A and B, denoted by A\ Bisdefinedas A \ B ={x|xOA and x[IB}.
A\ Bisasoreferred to asthe complement of B withrespect to A.

4. Thesymmetricdifferenceof A and B, denotedby A AB, isdefinedasA AB=(A\B) O(B\A).

1.7 Example

LetA={2 4,68 10,12}, B={2 68,12, 15, 18}.

Then AOB ={2,4,86,8,10, 12, 15, 18}
A nB={26,8, 12



ANB ={4,10}
AAB ={4,10} 0 {15, 18} ={4, 10, 15, 18}.

1.8 Complement of a set

Let A beany setand BU A. Thecomplement of Bin A, denoted by B' is defined as the set
B' ={ xUA : xUB}
weobservethat B' = A\ B, since BUA.
Example: Let A = {x|xisanalphabetinEnglish},and
B = {y|yisavows inthe English alphabet} .
Then B' in Ais:{z|zisaconsonantinthe English a phabet} .

1.9 Some Propertiesof operations on sets

1. Let A, B, C bethree sets. Thefollowing properties, satisfied by the operations of union,
intersection and complement of sets, can be verified either from their definition or by the Venn

diagrams.
() AOA=A A nA=A |dempotent Laws
) AOB=BOA AnB=BnA CommutativeLaws
(i) (AOB)ODC=A0(BOC) (AnB)nC=An(BnC) AssociativelL aws

(v, AOBnC)=(AOB)n (AOC)| An(BOC)=(AnB)O (AnC) | Didributivelaws
(v) If A,Baresubsetsof U, then

(AOB)=A"nB (AnB)=A"O0B De Morgan'sLaws
(Vi) A\(BOC)=(A\B)n (A\C) AN(B n C)=(A\B)[1(A\C)
(Vi) AOA =U An A =0

Vi) (AY =A, U=q p=U

2. Thefollowing propertiescan dso be verified from definitions.
If A andB aretwo sets, then
() AUB- Al B=B A B=A.
(i) ADB and Bl A~ A=B.
(i) AN\B=A\(AnB)= (AOB)\B.
(iv) AN(ANB)=An B.
(v) (ANB) O (AnB)=A.
i) (ANB)O (BNA)DO (AnB)=AOB.
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(vi) (ANB) O (BNA)=(A OB)N(ANn B).
(viii) 1f Band Caresubsetsof A, then
B\C=Bn C,B~C =Bn C
3. Thefollowing propertiesfollow from the symmetric difference of sets.
If A, B, Carethreesets, then
(i) Ahp=A (i) AAA=g
(i) AAB=AACO B=C (iv) AAB=BAA
(V) AA(BAC) =(AAB)AC.
Weshall now establishtheresult (v) :
we havefrom 2(vii)that AAB =(A0OB) n(A'0OB).
O (AAB) =(AnB) O(A'nB'"), by De€ Morgan'slaws.
Hence (AAB)AC= {(AAB)OC}n{(AAB)OC}

[(AOBp (A0 B) C] n [(AnB)O(AA BY C]

(ADUB @) (A' (B nC) [{AO(Ah B)P @]
[{BO(AN B)H C]

(AOBl ©) (& B nC) (AOBI @) (A'ORB C).

Sincethe expression ontheright of the above equation isunchanged by theinterchangeof A and C, we
have

(AAB)AC= (CAB)A A =AA(CAB)=AA(BAC).

1.10 Cardinal number of a set

1.10.1 Definition

If Aisafinite set, then the number of distinct elements of the set A is called the cardinal
number of that set and is denoted by n(A).

Thefollowing properties can be verified in terms of the cardinal number of sets.

Let A, B, Cbefinitesets. Then

() n(AOB)=n(A)+n(B)-n(A n B)=n(A)+n(B),if A andB aredigoint sets

(i) n(AOBOC) =n(A)+n(B)+n(C)-n(AnB)-n(Bn C)-n(Cn A) +n(An Bn C).
(i) n(A~ B) =n(A) ~ n(A n B).
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Relations

I ntroduction

Theword r el ation connotes arecogni zabl e connection between two elementsor entities. If arelation
Risassociated between two setsA and B, thenwetak of arelationfromAtoB. If ald Aand b O B, then
if aisrelated to b, wewritea R b and the ordered pair (a, b) O R.

2.1 Cartesan Product of sets

2.1.1 Definition

Let A and B be two non-empty sets. Then the set of all ordered pairs (x, y) where
x O A andy [0 B iscalled the cartesian product of A and B and is denoted by A x B.

We write A x B={(x,y) | x JA andy [ B}.

Example: Let A={a,b,c}, B={p,q}.
Then A x B ={(a, p), (b, p), (¢, p), (a a), (b, q), (c, 9)}
and B x A ={(p,a), (p. b), (p. ¢), (q, &), (a, b), (a, c)}.
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2.1.2 Observations

(i) A xB # B xA, sincefor any distinct xandy, (x,y) # (y, X).
(i) AxB=B x A - A=B.

(i) 1f n(A) = pand n(B) =q, then n(AxB) = pq.

2.2 Relation on sets

2.2.1 Definition : Relation

A relation R from a non-empty set A to a non-empty set B isdefined as a subset of the
cartesian product of Aand B. i.e., ROA B.

If Risarelation fromA toB andif (a, b) 0 R, then we also write aRb.

2.2.2D¢€finition : Domain and Range of arelation

If Aand B aretwo sets and if Ris a relation from A to B, then
() {xOA](x,y) ORfor somey [0 B}is called the domain of R.
(i) {y O B| (x,y) O Rfor somex O A}is called the range of R.

2.2.3 Typesof relations: Let A beaset and R be arelation on A.
Then (i) For any set A, arelationfrom A to A iscalledabinary relation onA.
(i) ForalalA,if (a,a) R, thenRiscalled areflexiverelation on A.

(i) Forany a, b O A, if(a,b) R O (b,a UR then Riscalled a symmetric
relation onA.

(iv) Foranya,b,cOAif(a,b) OR,(b,c) OR O (a, ¢c) OR, thenRiscaled a
transitiverelation on A.

2.2.4 Definition : Equivalence relation

Any relation R on a non-empty set A which isreflexive, symmetric and transitive is
called an equivalence relation on A.

2.2.5 Note: (i) A consequence of an equivalence relation on a set is that, it separatesinto the
elements of that set into aunion of pairwise disjoint subsets whose collectioniscalled the partition
of the set. Each disjoint subset iscalled an equivalence class.



Chapter

Sequences and Series

I ntroduction

‘Sequences and Series' play a significant role in Mathematics. We will learn about
convergence and divergence of sequences and series through various mathematical tests or
procedures in higher classes. However in this chapter, we recollect some basic concepts and

properties of sequences and serieswhicharein A.Pand G.P.
3.1 Definition

A seguence isa functionfromtheset of natural numbers N into R.
Suppose f : N - A. Then, thefunction f iswrittenas{ f(1), f(2), f(3), ... }.
Therefore { f(n) : n O N} istherange of the sequence.

{ f(n)} denotestheelementsof the sequence and the elementsareusually writtenas{a,}. ais
called then™ (general) term of the sequence{a,} .

. Thefollowing are examples of sequences.
() 2 48,16, 32, ...
general term=2", where nisapositiveinteger.
(i) 3,6,9, 12, 15, .....
genera term=3n.

@y 2,3,57,11, ..... isthe sequence of prime numbers.
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3.2 Series

An expression of theform
ata,+..+ta +..
wherea,, a,, ...., a,, ... arereal numbersiscalled aseries or an infinite series.

In higher mathematics, we attach areal number s called the sum of the series, in some
cases. Thiss isrelatedto the sequence{s,} where

s,=a; ta,+...+a.
However, in this chapter we confine only to finite series, i.e, a; +a, +.... + a, (sum of
afinite number of real numbers).

(o)

- Theinfinite series a, +a,+....+a +... is also denoted by zlan.
n=

n
and the finite series a, +a, +.... + a_is denoted by Zak :
1

. There are various types of sequences. Prominent amon:q them are (i) Arithmetic
sequence and (ii) Geometric sequence.

. Arithmetic series or Arithmetic progression and Geometric series or Geometric
Progression arise from these sequences.

3.2.1 Arithmetic Progression (A.P.)

Definition

A sequence (progression), in which every term except the first term differs by the
same fixed quantity, called the common difference (c.d.), from its preceding term, is
called an “ Arithmetic Progression” (simply A.P).

If ‘a’ isthefirsttermand‘d’ isthe common difference (fixed quantity), then the general
formof AP. isa,a+d, a+2d, .......
wewrite T, = a
T,=a+d =a+(2-1)d
T; = a+2d=a+(3-1)d

T

= a+(n-1)d.
T, is called the n™term with‘a’ asthefirstterm and ‘d’ asthe common difference.
o If S, denotes the sum of the first n terms of the sequence 1, 2, 3, ..., then
n(n+1)
S = ———.

2



. If Sn denotes the sum of the first nterms of the A.P,, then, we have

S, = 5l2a+(n-1d]

[a+a+(n-1)d]

[T+T,].

NIS NIS

3.2.2 Properties of A.P.

1. If aconstant ‘k’ isadded to each term of A.P., with common difference ‘d’, then the
resulting sequence also will bein A.P., with common difference (d + k).

2. If every term ismultiplied by aconstant ‘k’, then the resulting sequence will also bein
A.P., with thefirst term ‘ka’ and common difference ‘kd’.

3.2.3 Arithmetic Mean (A.M.)

Definition

+a,+a, +....+a. .
If a;, a,, a3, ..., a, are n real numbers, then Q7% 8T T s called the
n

arithmetic mean of a,, a,, as, ..., a,.

We observe that the arithmetic mean of three consecutive terms of an A.P., isthe middle
term. In other words, if a, b, c arethree consecutive terms of an A.P., then bisthe A.M. of

c+a
ab,candb=——.
2
Writeb=a+dand c=a + 2d.
atb+c _ a+(a+d) +(a +2d) .
3 3
. c+a .
Therefore, if a, carereal numbers, then b = 5 isthe A.M.of aandcand a, b, care
inA.P

. Let a, b beanytwo real numbers and n be a positive integer.

Then A.M. = +d.

Suppose, there exist n numbers a,, a,, a5, ..., a, suchthat a, a;, a,, a5, ..., a,, barein
A.P. Thena,, a,, a;, ..., a, arecalled n arithmetic means between a and b.

b-a
n+1
Write a =a+ kd, wherek=1, 2,3, ..., n.

Givena,bandn, letd =
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. . . b-a
Then a, a,, a,, a,, ..., a., barein A.P. with common difference equal to —.
10 921 93 n n+l

Thus, given a, b and n, there always exist n arithmetic means between a and b.

n
We observe that a, + a, +ag+ ... +a, = E(a+b) and

_ (n+1-kja+kb
n+1

The following observationsare useful in solving problems.
. 3 consecutive members of A.P. can bewrittenas a—-d, a, a+d.
. 4 consecutive members of A.P. can bewrittenasa—-3d,a—-d, a+d, a + 3d.

. 5 consecutive members of A.P. can be writtenas a—-2d,a—-d, a,a+d, a+ 2d.

3.2.4 Geometric Progression (G.P.)

Definition

A sequence in which each term except the first term bears a constant ratio to its preceding
termiscalled a Geometric Progression (G.P.). The constant ratio is called the common ratio.

If ‘@ isthefirsttermand ‘r’ isthecommon ratio, thenthegenera formof G.Pis a, ar, ar?, ar®......

T, —a=a.r!

T,=ar=a.r’?

T, =ar’=a.r’t

T, =a.r"tisthegeneral term of G.P.

n
-1 .
—a(:_ ), if rz1.

. Thesumtontermsof aG.P. isdenotedasSnand S, =

. Ifr=1,then Sn:a+a+a+...(nterms) = na

. If|r|<1,thesumto o, S of the infinite geometric series a, ar, ar?, ..., isgiven by

a
S =—.
N



3.25 Geometric Mean (G.M.)

Definition

If a and b are any two positive numbers, then \/ab isthe Geometric Mean (G.M.) of
aandb, sincea, Vab, barein G.P.

. If a, 9, 9, gS,....,gn,barein G.P, then 9,9, 9, ....,gnarecalledngeometricmeans

between aand b.
1

Givena, bandn, let r = %@"ﬂ_

Write g =a. K, where k=1, 2,3, ..., n, then a, 9, 95 9 ooy O b arein G.P. with
1

. Chn+1
common ratio equal to H;E .

Thus, given a, b and n, there always exist n geometric means between a and b.

Also, it can be observed that g, g, 9,9 = (ab)"'2.
3.2.6 Properties

1. If eechtermof aG.P.ismultiplied (or divided) by anon-zero constant k, then the resulting sequence
formsa G.P. withthe same common ratio astheinitial G.P. Thisimpliesthat if a, ar, ar?, ... arein
G.P thenka, kar, kar?, .... alsoarein G.P.

2. Thereciprocasof thetermsof aG.P. asoarein G.P.

3. If eachtermof aG.P.israised tothepower ‘K, then theresulting sequenceisin G.P. with common
-k
ratior”.
Asin the caseof A.P., thefollowing observations are useful.

a
4. 3consecutive membersof aG.P. : T a, ar,

a
5. 4 consecutivemembersof aG.P.: F’
a
P2’

3.2.7 Réationship between AM and GM

,ar, ar®,

| © =|o

6. 5 consecutive membersof aG.P.: a,ar, ar’.

Let A and G denote the AM and GM respectively between two given positive real numbers

‘a’ and‘b’. Thenwehave A :izb and G =/ab. Let usconsider
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A-G :%b—\/%

=a+b—2\/£
2

_ (Ja-+b)’

2
>0. (D)

Thisimpliesthat A >G.
Therefore A.M. of two positive numbersis>their G.M.

Ja- by’
From (1) weobservethat A=G = A-G=0 = %=0 < a=b,

Moregeneraly, let a;, a,, ..., a, benpositivenumbers. Let A = w = arithmetic mean and

G=(aia,2....an)”“=geometricmeanof ay, ,, .., &, Thenitcanbeshownthat A > G with equality iff
y=a=..=a,
3.2.8 Sum ton termsof some standard series

Notation : Inthe begining we mentioned that for any nnumbersa,, a,, ..., a,.

n
ata,+t..+a, = Z 8 . Attimeswedenotethesuma, +a, +.... +a by Za_ thereby implying
k=1

that thesumisconsidered for thetermsa,, a,, ..., a,,.

Thuswhen nisunderstood to be given and

n +1
g, =k In=3Yk=1+2+.. +n:n(n )_

k=1 2

n + N
a =k En?=y kK =12+ 2%+ . 2o NnADEn+D)

=) 6

T mn(n+1)°

= 3: k = 3 3 3=

8 =k, In kZ:l P+2+. . +n’= g H.



Chapter

Mathematical Reasoning

I ntroduction

Logic isthe subject (discipline) that deals with the methods of reasoning and it provides the rules
for determining whether an argument made in favour of truth/falsehood of a certain statement isvalid
or not. Logic isthe basis of mathematical reasoning.

We communicate our ideas or thoughts in one or more than one sentence. These sentences are
asfollows.

(i) Declarative sentence

A sentence that makes a declaration is called a declarative sentence.
1. Itisaboundary.
2. Hyderabad is the capital of Andhra Pradesh state.
3. 12+ 22+ 32+ 4%+ ..+ n?=n(n + 1)/2.

are some examples of declarative sentences.
(i) Imperative sentence
A sentence that expresses a command or request is called an imperative sentence.

1. Close the door.
2. Stop talking.
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(i) Interrogative sentence (question type)
A sentence in the form of a question is called an interrogative sentence.
1. Areyou honest in your duty?
2. Where are you going?
3. What are you doing?
are some examples of interrogative sentences.
(iv) Exclamatory sentence

A sentence used to say something loudly and suddenly because of surprise is called an
exclamatory sentence.

1. How wonderful itis!
2. How beautiful itis!
3. How dangerousit ig!

are some examples of exclamatory sentences.

4.1 Definition (Statement)

A declarative sentence is called a statement if it is either true or false but not both.

1. Example: “The sum of two natural numbers is a natural number” is a statement because it is a
declarative sentence and it is true.

2. Example: “5+ 6> 13" isaso astatement because it is a declarative sentence and the sentence
isfalse.

4.1.1 Note

A statement may be pertaining to mathematics such as 1 + 2 = 3 or non-mathematical themes.
For example, “The sunrisesin the east”.

4.1.2 Note
A statement is also called as a proposition.

4.1.3 Definition (Truth value)
The truth and falsity of a statement is called its truth value.

4.1.4 Notation

(i) If astatement istrue then its truth value is denoted by T, otherwise its truth value is denoted
by F.
(i) The statements are denoted by p, q, 1, S, .....
For example, p: thesum of 2 and 3is5.
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4.1.5 Example

Consider the following sentences.

[. 1. Thesumof 1and 2is3.
2. The sguare of an odd integer is odd.
3. A ball thrown in the open ground will fall on toit.

[I. 4. 16 can be written as the sum of two even prime numbers.
5. 3=4.
6. The sum of all angles of atriangleis 360° .

[I1. 7. nisaprime.

8. x+1=6.
9. x+y=8.

V. 10. How longthisriver il
11. Tomorrow is Friday.
12. Man will reach Mars by 2020.
13. eisaspecia number.

Here (1),(2),(3) are statements whose truth value is T and (4),(5),(6) are also statements but their
truth valueis F. Now (10) is not a statement because it is not a declarative sentence. The declarative
sentence (11) has truth value T when it is considered on Thursday otherwise its truth value is F.
Therefore (11) is not a statement. The sentence (12) is a statement. The truth value of (12) could be
determined only in the year 2020 or earlier if aman reaches Mars before that date. The sentence (13)
is not a statement as the word “special” is undefined.

The sentences (7), (8) and (9) are not statements. However, they become statements once a
numerical valueis assigned to n, x and, x and y respectively. For exampleif n= 6 then (7) isfalse
and if n =11 then (7) istrue. The sentence (8) istrue for only x =5 and for all other values of x it
is false. The sentence (9) has truth value T if x =5, y =3 and hastruth value Fif x=1,y=3.

The sentences of the type (7), (8) and (9) are called predicates which we will discuss later. The
symbols which need to be given values from a given set (it is known as Universe) in order to obtain
astatement are called free variables. The predicatesin one free variable, two free variables, three free
variables respectively are denoted in the form P(x), P(x, y), P(X, y, 2). For example, P(n) : nis prime,
n O N (set of natural numbersisthe universe), Q(x): x +1 =6, x [0 Z (set of integersisthe universe)
SX, y) : Xx+y=6,x Yy UOR (set of real numbers is the universe).
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4.1.6 The law of the excluded middle, the law of contradiction

In mathematical reasoning, we are not going to be preoccupied with the actual truth value of a
statement. We shall be interested only in the fact that it has a truth value. Therefore, we ignore the
sentences like (10) to (13). Mathematical theories are constructed starting with some fundamental
assumptions called axioms.

For example, the natural numbers are generated by Peano’s axioms in number theory and later
the whole numbers, integers, rational, irrational and real numbers are defined. Further addition,
subtraction etc.. are defined. Likewise, for definiteness we have the following two assumptions for the
statements (or propositions) .

1. For every statement (or proposition) p, either p istrueor itsnegation (See 4.2.1) istrue;
Thereisno third possibility. Thisisknown asthe law of the excluded middle.

2. For every statement (or proposition) p, that pistrueand p isnot true are mutually exclusive.
It is known as the law of contradiction.

With these assumptions, sentences of ambiguous nature are eliminated from our discussion. The
theory of mathematical reasoning is developed by defining certain terms involving the statements. This
we learn in the next section.

4.2 Negation, Conjunction and Disunction

In case of number theory, after defining the real numbers we go to operators like + (addition),
— (subtraction ), x ( multiplication) etc.,. Likewise, we have logical operators or connectives for
combining or modifying the statements. In this section we learn negation, conjunction and
digunction and learn if ... then, if and only if in the next section. The negation modifies a
statement and others combine the statements. The statements are combined by means of and, or, if..
then, and if and only if. The statements are modified by the word not. Now we proceed to give
the definitions of these.

4.2.1 Definition (Negation)

The denial of a statement p is called the negation of p and it is denoted by ~p read
as not p.

Example: Let p: Mumbai isacity. Then ~p: Mumbai is not a city.

Notethat ~p can aso be stated as*“It isfalse that Mumbai isacity” or “It is not the case that Mumbai
isacity”
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4.2.2 Definition (Simple statement)

A statement is said to be a simple statement if it cannot be split into two or more
sentences.

For example, “Einstein isagenius’ is asimple statement as it cannot be split into two or more
sentences.

While expressing various ideas, we use two (or more) statements one for each idea and combine
them by connecting words like ‘and’, ‘or’ etc.

1. Example: Let p: | had reached Mumbai and travelled by train to reach my house. This statement
p includes two simple statements.

g: | had reached Mumbai.

r : | travelled by train to reach my house.

2. Example: Let p: al primes are either even or odd.

This statement p includes two simple statements.
g : All prime numbers are odd
r : All prime numbers are even.

4.2.3 Definition (Compound Statement)

A compound statement is a statement which is made up of two or more simple
statements which are called components of the given statement.

The words (phrases) connecting the components are called connectives.

4.2.4 Déefinition (Propositional function)

A propositional function is a function whose variables are statements such as
p,q, f, S ... for example, if p, g are statements “p and " is a propositional function
of p and g. It is denoted by P( p, q).

4.2.5 Definition (Truth table)

A table showing all possible truth values of the components of a propositional function
P and its truth values is called the truth table.

For example, the truth table of ~p is as follows.
Truth table of ~p

p ~p
T F
F T

Here ~p is a propositional function of p. It may be expressed as P(p): ~p.
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4.2.6 Definition (Equivalent statements)

Two statements are said to be equivalent if the two statements have the same truth
values. In case the statements are propositional functions, they are equivalent if they have
the same truth table. If two propositional functions P and Q are equivalent we denote it

as P = Q.

For example p and ~(~p) are equivalent statementsi.e,, p = ~( ~p). It can be verified by
construction of the truth table.

Truth table of ~( ~p)

p P ~(~p)
T F T
F T F

Note that the truth values of p and ~(~p) are the same.

4.2.7 Definition (Conjunction)

If p, qare statementsthen p and q is a statement and it is called as conjunction
of pandg. Itisdenotedbyp Q.

Weread p [0 q as pandg. The conjunction of p and g has truth value T only when both
p and q have truth values T. The truth table of p O q isshown in the following table.

Truth tableof p O q

p g pOdq
T T T
T F F
F T F
F F F

p O g O rissaid to be conjunction of the statements p, g and r and this can be extended to afinite
number of statements.

We can consider p [0 g as a propositional function of pand qi.e, P(p,q) :p O Q.
4.2.8 Example

Let P: Oislessthan every positive number and every negative number.
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Let the components of the statement P be

g: Oislessthan every positive number
r : 0 islessthan every negative number.

We know that g istrue and r is false. Therefore, the truth value of Pisfalse.
4.2.9 Example

Let P: Through two given points only one straight line can be drawn and through three non-
collinear points only one circle can be drawn.

L et the components of P be
g : Through two given points only one straight line can be drawn
r : Through three non-collinear points only one circle can be drawn.

The statements g and r are true, therefore the truth value of PisT.
4.2.10Example

Let p: Mixture of spirit and water can be separated by chemical methods.

Here, p is not acompound statement. The statement p does not have two statements. The word
“and” usedin p, isnot aconnective. It tellsonly about the contents in the single word mixture. Note
the difference between the literal use of the word and in contrast with its usage as conjunction.

4.2.11 Definition (Digunction)

If p and g are any two statements then p or q is defined as disjunction of p and g and
isdenoted by p 0 g. p 0Oq has truth value T whenever atleast one of p, g has truth

value T. The truth table of p [ q is shown in the following table.

Truth tableof p O q

p q pOq
T T T
T F T
F T T
F F F

p O q Or isthe digunction of the statements p, g and r. Note that, the disjunction is defined in
theinclusive sensei.e., digunction connective isinclusion or.

There are two types of ‘or’ which we use in our every day life.
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4.2.12 Example

Let p: A cup of coffee or teais available with snacks in arestaurant. From the above statement
we understand that there is a choice between coffee and tea. One can have coffee with snacks or tea
with snacks but can not have both coffee and tea. ‘or’ used in such contexts, is called exclusive ‘or’.

4.2.13 Example

Let p: A student who has taken Biology or Chemistry at degree level can apply for PG. course
in Microbiology.

We understand from this statement that a student who has taken either Biology and / or
Chemistry can apply for the said course. So, a student who has taken both the subjects can apply
for the said course. Or used in such contexts is called inclusive ‘or’.

4.2.14 Example
Let p:50isamultiple of 7 or 8. Let its components be
g : 50 isamultiple of 7
r : 50 isamultiple of 8.
Thenp = q O r. We know that both g and r are false. Therefore p is false.
4.2.15 Example

Let p: Two distinct points in space determine aline or a plane.

Let its component be
g : two points in space determine aline.
r : two points in space determine a plane.

Thenp=qQ r. We know that g istrue but r isfalse. Since either of g and r istrue the truth value
of pisT.

4.2.16 Example

Let p: The collegeisclosed if it is aholiday or a Sunday.
L et its components be
g: Thecollegeisclosed if it is aholiday.
r: Thecollegeisclosed if it is a Sunday.

The truth value of pis T since both g and r are true.
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4.3

then

Implication - conditional and bi-conditional

We come across, in everyday life, sentenceslike “if | had goneto the railway stationintime
| would not have missed the train”, “if xisarea number then x2> 0 and “If a number is

divisible by 49 then itisdivisible by 7.

4.3.

1 Definition : Implication

it isdenoted by p - Q.

Let p and g be any two statements. “If p then " is called an implication and

We define p - @ as a statement and it is false only when p is true and q is false.
Thetruth tableof p - gisshown in the following table.
Truth tableof p - Q

P q P -q
T

nmoH A
nm 4 7 A

F
T
T

4.3.2 Note

Implicationis also called conditional.

For theimplicationp - q, piscalled premise or hypothesis or an antecedent and g is called
as conclusion or consequent.

The truth value of the implication is defined. Therefore, the truth value of an implication depends
only on the truth values of p and g but not any relation between antecedent and consequent
of the implication. For example, if AndhraPradeshisin Americathen5 + 6 =17. Thetruth
value of thisimplicationisT. Thereasonis, the statement “Andhra Pradeshisin America’ has
truth value F and the statement “5 + 6 = 17" has the truth value F.

Of course, there are rules for testing the validity of the conclusions which you learn in higher
classes.

In our everyday language, it is customary to have some sort of relation between antecedent and
consequent of an implication. For example, “if | get aticket then | shall see the movi€’. In this
implication, the consequent (see the movie) refers to the antecedent (get aticket). But thisis not
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the case in our defined implication. i.e., The statements p and g of an implication p - g need
not have any relationship.

Therefore, there may or may not be a relation between the antecedent and consequent as per
the definition of an implication. For example, if Einsteinisageniusthen 5+ 6 = 3. This
statement does not make sense to usin our conventional language. However, according to our
definition of implication (conditional), this statement is considered as an implication.

5. The statements, “if p then g” and “p implies q" are not the same in the reasoning. But, in
Mathematics they are used interchangeably.

1. Example : If ABC isatriangle then sum of its anglesis 180°.

2. Example : If the sky is overcast then the Sun is not visible.

4.3.3 Definitions

Let p and g be any two statements

) q - piscadledtheconverseof p - Q.
(i) ~p - ~qiscaled oppositeof p - q.

(i) ~q - ~piscaled contrapositive of p - Q.

3. Example: Consider the implication “if anumber is divisible by 36 then it isdivisibleby 6”. Let
p : A number isdivisible by 36.
g: A number isdivisible by 6.

Then the given implicationis p — @. The converse statement of itisq — p. i.e., if anumber
isdivisible by 6 then it isdivisible by 36.

4. Example : If x=aisaroot of f(x) = 0 then (x — a) is a factor of f (x).
The opposite of it isif x = aisnot aroot of f(x) =0 then (x — &) is not a factor of f (x).

5. Example: Consider the implication “if anumber isdivisible by 25 then it isdivisible by 5. Let
p : A number isdivisible by 25.
g: A number isdivisible by 5.

Thenthegivenimplicationisp — @. Itscontrapostive statementis ~q — ~p i.e, “if anumber
isnot divisible by 5 then it is not divisible by 25”.
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4.3.4 Definition (Biconditional)

Let p and q be any two statements. The biconditional is defined as a conjunction of
p -~ gandq - panditisdenoted byp - q.i.e,

P - g=((pP - g O(Q@ - p). Further, p - qisalso stated as“p if and only if
g’ or “p is a necessary and sufficient condition for q° and vice-versa. The truth table of
p < (isgiven below.

Truth tableof p o q

P | d|P-d[d-Pp[Poqg=(pP-090O(@-p
T | T T T T
T | F F T F
F | T T F F
F | F T T T

Notethat p ~ qistrue only when p and q have the same truth values.

6. Example: Let p: A number (three or more digits) in which the number formated by the digitsin
the last two places (unit place and tens place) isdivisible by 4 and q : the number is divisible by 4.
Thenp - gmeansif anumber in which the part formed by the last two digitsis divisible by 4, then
the number isdivisibleby 4 and (9 - p) meansif the number is divisible by 4 then the number in
the last two places of the given number is divisible by 4. The conjunction of these two statements may
be stated as “a number is divisible by 4 if and only if the number formed by the digits in the last two
placesisdivisible by 4”. In symbolsp « Q.

4.4 Quantifiers

The phraseslike “there exists” denoted by [1, and “for all” denoted by [0 are called quantifiers.
The symbol O isalso called existential quantifier and [J is called Universal quantifier. J isalso
used in lieu of the phrase “for every”.

4.4.1 Definition: Open statement

Let U be a set. Suppose a predicate p(x) is true or false for each x 0 U. Such p(x) is
called as an open statement on U. Then the set U is called the Universe of discourse or
the Universe of the open statement p.

For example, p(x) : x is a prime and the universe U is the set of all positive integersi.e., A
declarative sentence is an open statement if (i) it contains one or more variables (ii) when the variables
are assigned values from a set (it is the universe) then it has truth value T or F.
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The following are examples of open statements:
1. p(X) : x + 2 isan even number, where the universe is the set all natural numbers.

2. p(xy) :x<y, where x and y are members of the set of all real numbers.

4.4.2 Notation

() “0Ox p(X)" isusedinthe sensethat p(x) istruefor every x belonging to the universe of p.
(i) “Ox, p(x)” isused in the sense that p(X) is true for atleast one x belonging to the universe of p.
4.4.3 Note

Negation of quantified statements

L ~[Ox p(] = D% ~p(x)
2. ~[Ox, p(¥] = Ox ~p(X)
3. ~[Ox ~p(x)] = Ox p(X)
4. ~[0Ox ~p(X)] = Ox p(x)

4.5 Validating Statements

Methods of proof of an implication p - q

[. Trivial proof of p - Q.
In this method of trivial proof of p — q, it isenough to show that the truth value of q istrue
i.e., theimplicationp - qistruewhen qistrue (regardless of the truth value of p).
1. Example: Let p(a, b) : a, b are non-zero integers such that a > b .
q(a b) : a° > b° and the universe U is the set of all non-zero integers.
Then g istrue. Therefore, theimplication p(a, b) — q(a, b) istrue (by trivial method of proof).
Il. Vacuous proof of p = 0.

In this method p is shown to be false so that the implicationp - qistrue.

2. Example: To show that ¢ [0 A, we have to show that
If 0O x xO@thenx O A v (D)
Let p(x) : x O @and q(x) : x JA.
Then we haveto show Ox, p(xX) O q(x). p(x) isfase, since the null set has no elements
init. Therefore (1) is true by the method of vacuous proof. Hence, ¢ [ A.
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[11. Direct Method of proof of an implication p - ¢

In this method, assuming p is true, g is shown to be true so that p — g istrue.

3. Example: Suppose we have to show that the implication “if n isodd then n?isodd” is true for
any integer n using the direct method. Let p(n): n isodd and q(n): n?is odd. Here the universe
U isthe set of all integers. Assume that p istrue. Then nisodd. Therefore there exists some integer
k such that n = 2k + 1.

Now, n? = (2k + 1)?
=4k2+ 4k + 1 =2(2k?+ 2K) + 1 = 2m + 1,
where m = 2k + 2k. Thus n? = 2m+1.
Hence n? is odd.
Therefore, the given implication is true.
V. Contrapositive (Indirect) of method of) proof of an implication p - q.
In this method assuming that q is false, the conclusion p is shown to be false.

Thelogicinvolved initis, theimplicationp — gqand ~q — ~p are equivaent
i.e,p - =~ - ~p.ltiscaled contrapositive law.

It can be shown by constructing the truth table of these two implications which are given below.
Let P(p, @) : p ~qgand Q(p, ): ~q - ~P.

p g - - [P:p-q [Q~q P
T T F F T T
T F F T F F
F T T F T T
F F T T T T

The truth values of P(p, ) and Q(p, q) are the same. Therefore they are equivalent.

4. Example: Suppose we have to show that the implication “if (3n+ 2) isodd then nisodd” where
nisany integer, by contrapositive method. Let p(n) : (3n + 2) isodd, g(n): n is odd and the universe
U isthe set of all integers. Suppose that g(n) isfalse. Then nisnot odd. It means n is an even number.
(As an integer n is either even or odd). Since n is even there exists an integer k such that n = 2k.
3n+2=23(2k) + 2 =2(3k + 1). Therefore 3n + 2 is an even number. Hence p(n) is false. By
contrapositive law, the given implication is true.
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V. Contradiction method of proof of an implicationp - ¢
In this method we assume that p is true and q is false and arrive at a contradiction.

This argument leadsto p O (~q) isfalse. Hence ~(p O (~q) )istruei.e., (~p) O gistrue.
Butwehave(~p) 0 g = p - . Hencetheimplication p - qistrue.

In case of asimple statement p, to show that p is true by the method of contradiction we will
assume that p isfalse and arrive a contradiction to afact or to the contents of the statement p. This

leads to conclude that our assumption iswrong. Hence the given statement is true.
VI. Method of proof by counter example

To disprove the statement: X, p(X), it is enough to provide a counter example i.e., to show
that %, p(x) isfalseit is sufficient to exhibit a specific value v in the universe such that p(v) isfalse.
The value v is called counter example to the assertion 1%, p(X).

The argument is as follows:

0% p(X) = p(a) O pb) O pc) O pd) ... (a, b, c etc. are in the Universe) X, p(x)
istrueif and only if p(a), p(b), p(c), .... are dl true. If any one of p(a), p(b), p(c), ... isfase then
00X, p(X) is false.

So, to disprove X, p(X) we can use the method of proof by a counter example. For example
to disprove the statement “all primes are odd numbers’ we can find a counter example “2 (which is
prime but not odd)”. Here the universe U is set of all positive integers.

45.1 Note

Toprovep ~ Qistrue, we havetoprovep - gandq - p aretrue. We may choose any

method of proof given above to prove p - qorq - p.

4.5.2 Note

If we show that p(x) istrue for any arbitrary element of the universe U then p(x) is true for al
x O U. Similarly, if we show that p(x, y) is true for any arbitrary elements of x and y O U then
p(x, y) istrue for al x, y O U.
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[. Very Short Answer Questions
(i) Answer All questions
(if) Each Question carriestwomarks

T

1. If A= —,—, —, and f : A _ Bisasurjectiondefined by f(x) = cosxthenfind B.
0 6 4 3 %
2. Findthedomain of thereal-valued function f(x) = ;.
log(2 - x)

3. A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics
books. Their selling pricesareRs. 80, Rs. 60 and Rs. 40 each respectively. Find thetotal amount the
bookshop will receiveby sdlling al the books, using matrix algebra.

4 1 A=02 ™ thenfind A+ A’ and A A",
o5 3

5. Show that the pointswhose position vectorsare —2a +3b +5¢, @ +2b +3¢, 7a —¢ arecollinear when

a, b, © arenon-coplanar vectors.

6. Let =27 +4] -5k, b =7 +j +k and T=7 +2k . Find unit vector in the opposite direction of

8. Provetha 59 *sn® _ oo
' cos?® —sing° o
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9.

10.

12.

13.

14.

15.

16.

17.

18.

19.

Find the period of the function defined by f(X) = tan (X + 4x + 9x + .... + n%X).

If sinhx = 3 then show that x = log,(3++/10) .

Section - B 5 x 4=20Marks

. Short Answer Questions

(i) Answer any Fivequestions.
(if) Each Question carriesFour marks.

bc b+c 1

Showthat [ca c+a 1|=(a-b)(b-c)(c-a).
ab a+b 1

Let A B CD EFberegular hexagonwith centre‘O’. Show that
AB+AC+AD +AE +AF =3AD =6A0.

If a=T7-2] -3k, b =2 +] -k andc =7 +3] -2k find ax (b xc).
If A isnotanintegral multipleof g , provethat

(i) tanA +cot A = 2cosec 2A

(if) cot A —tan A = 2cot 2A

Solve: 2cos?0 -+/3sin8 +1 =0.

_11|:|_ - |:| —]_D
Provethat cos%tan ?H-smé4tan E

I]B—CD_b—ccotA
H2 B b+rc 2

InaAABC provethat tan
Section - C 5 x 7=35Marks

Long Answer Questions
(i) Answer any Five questions.
(if) Each Question carries Seven marks.

Let f:A - B, g:B — Chbebijections. Then provethat (gof )™t = f log™.

. . . 1 1 1
— e+, = .
By using mathematical induction show that i1 N, 14727 710 upto nterms 3N+l
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22.

23.
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ol -2 3@
If A=50 -1 45thenfind(A)™
B2 2 1

Solve the following equations by Gauss-Jordan method 3x + 4y + 5z =18, 2x -y + 8z= 13 and
Sx—-2y+7z=20.

If A=(1,-2-1),B=(4,0,-3),C=(1, 2, -1) and D = (2, -4, -5), find the distance between
AB and CD.

If A, B, Careanglesof atriangle, then provethat sin2%+sinzg —sinzg =1—Zcos%cos%sin%.

InaAABC,ifa=13,b=14,c=15,findR, r, rr, and .
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1.11 Some Problems on Set Theory

Show that the set of letters needed to spell "CATARACT" and the set of letters needed to spell
"TRACT" are equal.

Let X be the set of letters in "CATARACT". Then
X = {C,A, T,R}

let Y be the set of letters in "TRACT"
Y = {T,R,A,C}

since every element in X is in Y and every element in Y is in ‘X’ therefore
X=Y

Showthat AUB=ANRB implies A=B

Let xed = xeAuB=>xeANB(rAUB=ANB)

= xe€B
Therefore Ac B e (1)

let xeB =xeAuB=>xeANB(rAUB=ANB)=>xeA4

Therefore BcAa @)
From (1) and (2) A=B
For any sets A and B show that p(4 " B) = p(A4) N p(B) (Here (p(A) is power set of A

LetX € p(ANB) = X c An B (By the definition of power set)
= XcAand YXcB
= Xep(4) and X € p(B)
= Xep(d)np(B)
Therefore p(ANB) c p(4) N p(B) (D)
Let Yep(A)np(B) = Yep(4d)and Y € p(B)
= YcAandYcB
= Yep(dnB)

Therefore p(A)N p(B) c p(AN B) .. (2)
From (1)and (2) p(4NB)=p(4)N ptB)
IfA is any set such that n(p(A4)) =l 64 then find n(A)
n(p(4))=64=2°=2"

Therefore  n(A4)=6
Show thatif A< B then C—-Bc C-4

Llet xeC-B = xeCand x¢B
(rxgB = x¢g A(-Ac B))
= xeC-4
Therefore C-Bc(C-4
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1.11.6

1.11.7

1.11.8
1.11.9

1.11.10

1.11.11

1.11.12

1.11.13

1.11.14
1.11.15

1.11.16
1.11.17

1.11.18

1.11.19
1.11.20

1.11.10) 45
1.11.14) B

1.11.18) 45

Assume that p(A4) = p(B). Show that A=B
A € p(A) (obvious)

= A€ p(B)(since p(4)=p(B))
A c B (by definition of power set)

Similarly, by the same reasoning above we can prove that B ¢ 4
Therefore A=B

Let A, B and C be the sets such that AUB=AUC and ANB=ANC then show that B=C

Let A, B and C be the sets such that p(AU B) = p(A4) U p(B). Justify your answer

Show that the following four conditins are equivalent:
(i) Ac B (ii)A-B=¢ (iii) AUB=B(iv) ANB=A

In a class of 100 students 55 students have passed in Mathematics and 67 students passed in
Physics. Then find the number of students who have passed in Physics only.

Out of 800 boys in a school, 224 played cricket, 240 played basketball. Of the total 64 played both
basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey, 24
played all the three games. Find the number of boys who did not play any game.

The set of intelligent students in a class is
(1)anull set (2)asingleton set
(3) a finite set (4) not a well-defined collection
If aN = {ax : x e N} then
3NNTN =(1)21 N (2) 10N (3) 4N (4) none

A={4"-3n-1:ne N} B={9 (n—1):ne N}then 4UB="?

Two finite sets have m and n elements. The total number of subsets of the first set is 56 more then
the total number of subsets of the second set. The values of m and n are

If A and B have 3 and 6 elements then the minimum number of elements in AU B is

A survey shows that in a city 63% of the citizens like tea where as 76% like coffee. If x% like both
tea and coffee, then

1) X =63 2) X =39 3) 5050<x<63 4H39<x<63

Suppose A, A, ..... A, are 30 sets each having five elements and B, B,, ....B, are n sets each

30 n
having 3 elements such that U 4 = U B, =S. If each elements of S belongs to exactly ten of A''s

i=1 J=1
and exactly 9 of the Bj's then the value of n is
If A= {¢, {¢}} then the power set of A is .............

Let A= {(x,y):y=e",xeR},B={(x,y):y=e",xe R} then 4" B =
Answers

1.11.11) 160 1.11.12) 4 L11.13) 1
1.11.15) 6,3 1.11.16) 6 1.11.17) 4

1.11.19) {¢, {9}, {{d}}, A} 1.11.20) # ¢
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2.3 Solved Problems on Relations
Let A and B be two sets containing 2 elements and 4 elements respectively. Then find the
number of subsets of 4x B having 3 or more elements.
n(A)=2.n(B)=4.So n(AxB)=8
Therefore, number of subsets of

AxB 2% =256

Therefore, number of subsets of 4x B having less than 3 elements
= 8, +8 +8, =1+8+28=37

Therefore, number of subsets of 4x B having 3 or more elements
= 256-37=219

Find the domain and range of the relation {(1,x),(2,),(3,x),(4,2)}
Domain = {1,2,3,4}
Range = {x,y,z}

IfA= {1, 2,3} find the number of reflexive relations in 4

The number of reflexive relations ina set A having »n elements

x.log101—5-0—+ log,,(1+2%)=1og,, 6

Therefore, answeris 23¢-D= 26 = 64
Let R be the set of real numbers. Show that

A={(x,y) € RxR: x = ay,a for some rational number} is not an equivalence relation?
() x4Ax > x = a x where a = l'e Q — A isreflexive
(i) (0,1) € 4 since 0=0.1.But (0,1) ¢ A isnot symmetric

A isnot an equivalance relation
A={(x,y) € RxR : x - y is an integer} . Show that Ais an equivalence relation
() xdx=>x-x=0eZ= 4 isreflexive
(i) xAy=>x-yeZ=y-xeZ= A issymmetric
(iil) xAy,yAz =>x-y€eZ,y-zex—y+y-z€eZ=>x-z€Z

= A istransitive

.. 4 isanequivalance relationonR

2.4 Exercise

24.1

R=1{(1,3),(4,2),(2,4),(2,3),(3,1)} Be arelation on the set A= {1,2,3,4}. The relation R is
(1) A function (2) Reflexive (3) not symmetric (4) transitive
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242

243

24.4
24.5

The set S = {1,2,3, .... 12} is to be partitioned in to three sets A, B, C of equal size. Thus
AUBUC =S8,AnB=BNC =Cn A=¢.The number of ways to partition S is?

Let R be the relation on the set R of real numbers defined by a Rb iff |a—5|<1 show that
R is reflexive and symmetric.
Show that the relation less than in the set of natural numberes is only transitive

Let N denote the set of all natural numbres and R be the relation on N X N defined by (a,b)
R (c,d) if ad(b+c) = bc (a+d) then show that R is an equivalence relation.
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Chapter S : Logarithms

5.1 Introduction

The rebirth of science after the state of rigdr mortis imposed by the church in the Middle ages
was particularly evident in the awakened interest in astronomy and in the attendant development of
trigonometry, generated also by other forms of world exploration - land surveying, cartography and
navigation.

scientists every where began to spend enormous amounts of time in calculating tables of trigono-
metric functions, and it became important to find methods of replacing the often laborious operations
of multiplicatin and division with addition and subtraction - e.g, by employing formulae such as 2 sin a
sin B = cos(a — B) — cos(a + B).
5.2 History of Logarithms

The invention of Logarithms is widely attributed to at least two people viz., John Napier (1550 -
1617) and Joost Burgi (1552-1632). John Napier originally published his work on logarithms to calcu-
late sines of right angled triangles that have very large hypotenuses. Later, Napier along with another
mathematician, Henry Brigggs modified the definiton of logarithms intot the form that we know today.
5.3 Definition

Logarithm of a positive real number u to a positive base x # 1is the value to which the base x is
raised to yield u. The logarithms is read as “Logarithm of u to the base of x” or simply as “log base x of
u”. It is represented as follows.

logu =v
Consequently, it can be written as

XX = u

v

ie., x u—>v=log u
Example: 2 =8->log,8 =3
1 1
3T g T 0y T
It is apparent that logarithms with base 1 are not defined. Although there can be logarithms with

number of bases, two of them are widely used.

Logarithms with base e = 2.718(lim, _, (1 + l) are called natural logarithms or Napierian logarithms.
n

It can be written as log_x or Inx
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S.4 Properties
5.4.1 Property I
Vx>0 and x#1
5.4.2 Property 11
Yu>0 and ¥ #1, we have

5.4.3 Property I11

log, u

log . 1=0

=1

VneRu>0,x>0 and x #1, we have log, «" =nlog, u

5.4.4 Property IV

Since logarithms are defined only for positive real numbers, ifu>0,v>0,x>0

and x =1

5.4.5 Property V

log, uv=1log u+log, v

Since logarithms are defined only for positive real numbers, ifu>0,v>0,x>0and x #1

log, % =log u—log, v
5.4.6 Property VI
Forallu>0,v>0,x>0and v#1, x 21
log, ulog, u =log, u (change of base)
5.4.7 Property VII

Forallu>0,v>0,x>0and v*1, 6 x#1

log, u=
log, v

5.4.8 Property VIII

Forallu>0,x>0and x #1

log, u

X =u

5.4.9 Property IX

Foralla>0,b>0,x>0and x #1

alog,b — blOSx“

5.4.10 Property X

VmmneRu>0,x>0,x#1and m#1, nz0

mwm
log, nu™ =—log, u
n



5.4.11 Property XI
Forallu>0,v>0,x>0and x #1
For x>1 If u>v
' then log u>log v
For 0<x<1
If u>v
then log u<log v
5.4.12 Property XII
Forallu>0,v>0,x>0and x#1

Forx>1 If u<v

then log u<log v .
ForO0<x<1 If u<v

then log u>log v
5.4.13 Property XIII

log,u _logu

log,u =
log,v logv

5.5 Solved Problems
5.5.1 If nis a natural number such that
n = pipd.pE; D, Pye-...p; aredistinct primes

Then prove that log n > klog?2

Sol: n= PPye.p
= logn=q,logp +a,logp, +............. +a, log p,
> alog2+a,log2+............ +a, log2(: p, 22)

(o, +a, +...a;)log2 2 klog2(w ; 21)
1
5.5.2 Solve log, , sin2x +log,, cosx = log,, —=
8o.1 g0 glO\/E

. 1
Sol: log,, sin2x +log, cosx = log, B 1
= log . sin2x+log,cosx = log, N

= —log,sin2x+log,,cosx = log,07_3—

cosx _ 1
= sin2x 737
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= sinx = 3[3——sm—75
2 3
. -
=x = mm+(-1)'—,neZ

5.5.3 Find the value of log ; \/ a\/a:}a\/a\/;
111 1 1 11111 31
Sol: aayaada = digiaiggn = gIVEEE = g8

Therefore 1o a% —élzlo a——32

erefore ga% 21 g 16

5.5.4 Find the value of 42e’

Sol: 4P’ = 4log,3% = 4log,’= 4 = 4

89 r :
5.5.5 Find the value of ), 10g, taﬂ@
r=1

& nr
Sol: 2. log,, tan 180~ logj(tan 1°tan2° tan3°......tan 89°)

r=1

= log,,(tan1° tan89°).....(tan 44° tan 46° ) tan 45°
10

log,,(tan1° cot1°).....(tan 44° tan 44°) tan 45°

log, (1.1..... 1) = log,)1 =0

1

log3" a

5.5.6 Find the value of z
1

il

n 1 n
Sol: Z z log, 3"
1

T log,. a

3 log,3 = log,3> n
1 1

n(n+ l)log2 3
2

Setnd If log,(ab) = x then find the value of log,(ab)
Sol: Let y =log,(ab)

then T +; = log,a+log,b=1log,ab=1
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1 1 x-1

. — 1 —_——  =—) = ._f.._
y x X F x-1

5.5.8 Solve x +log,,(1+2*)= xlog,,S+log, 6
Sol: X+ lbglo(l +2%) = xlog,,5+log,, 6

x.log,, 10 +1log,, (1+2*) - x.log, 5 = log,6

10 . A
x.log,, 5 +log,,(1+2") =log,, 6
log,, 2*(1+2%) = log,,6 >2"(1+2")=6
2% +2°-6=0
= (2*+3)(2°-2)=0
2* =3 or 2* =2=2" =2("+2* > 0,2* =-3) is impossible) — x =1
Practice Problems
1.  Given log,2=0.3010, find the value of log,,125
2.  Find the value of log,, 256
3. For x#2, In(x* - 2x)—In(x—2) = 1n(2x +5)
45 '
4.  Find the value of | [108(cosx) where all measurements are in degrees.
-45
5.  Findnif log, 5,log, 7,log,9.......... log,n+2=3
6. If log,,343 =2.5353 then the find the least positive integer n such that 7 > 10°
(JEE problem)
7. If gloes2 | gloea4 _1(le:83 then find x.
8. If log, log; (\]x+5 +\/;)=0 then find x.
9.  If log,;(x—1) <log,, (x—1) then find the interval in which x lies.
10. If 24 =b*+ ¢*,abc =8 and log, a,log_b,log, c are in G.P then find a, b, c.
5.6 Definition
Any common logarithm of a number can be expressed as a sum of a “characteristic” and “man-

tissa|. The integral part of the logarithm is called the “characteristic” adn the decimal part is called the

“mantissa”. Let us consider an example

log,, 2=10.30103

So, the characteristic of log 2 is 0 and the mantissa would be .30103
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1
Let us calculate the characteristic and mantiss of logm(ij

log(-;—) = log1-1log2=00-0.30103 =-0.30103 so that log(%) is negative.

Now it is found convenient that the mantissa of all logarithms should be kept positive. We there-
fore instead of — 0.30103 write —1 + 1 —0.30103 =—+ 0.69897. For shortness this latter expression is

written as 7.69897 . The horizontal line over 1 denotes that only the integral part is negative.

The logaritthms to the base 10 are called common logarithms or Briggs logarithms. log, n is
simply denoted by log n without specifying base. -

10° =1=> log,, 1=0

10' =10 = log,,10=1

10> =100 = log,,100=2

10° =1000 = log,,1000=3

We observe from the above that logarithm of a number between 2 and 10 lines between 0 and 1

i.e. 0+ some positive fraction between 0 and 1

Similarly, logarithm of a number between 10 and 100 lies between 1 and 2 i.e., 1+ some positive

fraction between 0 and 1.

Simlarly, logarithm of a number between 100 and 1000 lies between 2 and 3 i.e., 2+ some posi-

tive fractionbetween 9 and 1.

So, we noticed that the logarithm of every positive real number conssts of an integral part and
positive fractional part. The integral part of the logarithm of a number is called “characteristic” and the
fractional part is called “mantissa”.

Rule to find the characteristic of logarithm of a number
The characteristic of log7.25 is 0
The characteristic of 10g87.6 is 1
The characteristic of log7.25 is 2

Rule 1: If there are k digits in the integral part of a number n(n-1) then the characteristic of

log,,n becomesk -1
10°=1 = log,1=0
10'=0.1 = log,,0.1=-1
102=0.01 = log,,0.01=-2
102 =0.001 = log,, 0.001 =-3
We observe from the above that logarithm of a number between0.1 and 1 lies between -1 and 0

i.e. -1+some positive fraction between 0 and 1
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Similarly, logarithm of a number between 0.01 and 0.1 lies between -2 and -1 i.e.-2+some positive

fraction between 0 and 1

Similarly, logarithm of a number between 0.001 and 0.01 lies between -3 and -2 i.e.-3+some

positive fraction between 0 and 1
The characteristic of 10g0.584 is -1or 1
The characteristic of 10g0.04789 is -2 or 2
The characteristic of 10g0.002546 is -3 or 3

Rule 2: If there are k zeros after the decimal point in the in a positive number n(n<1) (i.e.a

positive fraction) then the characteristic of log 1S k +1
Note: The characteristic of the logarithm of any number can always be determined by inspection
How to find the mantissa of logarithm of a number

The mantissa of a logarithm of a number is found from table of logarithms. Generally, we use

four figure logarithm tables. There are tables of mantissa for any number of digits
Example: Find log 874.5
Sol: The characteristic of log 874.5 is 2(Since there are 3 digits in integral part of 874.5)

The significant digits in 874.5 are 8745. Se we pick 9415 opposite to 87 and under 4. Then we

add 2 in the mean differences under 5 to 9415 which becomes 9417
Therefore log874.5 =2.9417
Similarly, 10g0.0004=2. 6021=-4+0.6021

Tables of antilogarithms
We use tables of antilogarithms to know the value of x if log x is given.

We know the significant digits in x from the table of antilogarithms. Then we write the value of x

by the characteristic of log x

Example

Find the value of x if log x =2.3654
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From the table of antilogarithms, we pick 2317 opposite to .36 and under 5 and add 2 in the mean
differences under 4 to 2317 which becomes 2319. The characteristic of log x is 2. So, there will be 3

digits in the integral part of x. Therefore x = 231.9

25.62x+/346.5 x/465.7

J76.42 x /4444 x 4/663.5

_ 25.62x J346.5x3/465.7
J76.42 x 344.44 x 4/663.5

25.62x+/346.5 x 3/465.7
J76.42 x 3[44.44 x 4/663.5

Example: Find the value of

k

logk = logli

log25.62 + %log 346.5+ %log 465.7 - % log76.42 - % log44.44 — % log 663.5

1.4085 +%(2.5397)+%(2.6682)——;—(l.8832)—§(1 .6478)—%(2.8218)

1.4085+1.2699 +0.8561—0.9416 —0.5493 - 0.7055 —2.1964 =1.3381

k = antilog 1.3381 =21.78

Il

Example If log 2 =0.3010 then find the number of digits in 256'°
Sol: k = 25610 = (28)%0 = 240

then log k = 400 log 2 =400 x 0.3010 =120.4

Number of digits ink =121
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